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2. Parametric Vector Functions   (continued)

Any non-zero vector r  can be decomposed into its magnitude  r  and its direction: 

ˆ , where 0r r  r r r

Tangent Vector: 
T

dx dy dz d

dt dt dt dt

 
  
 

r
T

If the parameter t is time, then the tangent vector is also 

the velocity vector, 

d

dt


r
v , whose magnitude is the speed 

d
v

dt


r
. 

The unit tangent is 

d d

dt dt
 

r r
T

Arc Length 

In 2 : 

In 3 : 

The vector 
d

dt

r
 points in the direction of the tangent T  to the curve defined parametrically by 

 tr r .
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Example 2.01 

    (a) Find the arc length along the curve defined by 

   
T

1 1
4 4

2 sin 2 cos2 sint t t t t   r , from the point where t = 0 to the point where t = 4π.

    (b) Find the unit tangent T . 

    (a) 

^
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Arc Length for a Polar Curve 

For a polar curve defined by     , ,r f        the parameter is     and

   cos sinx f y f     .

Using the abbreviations     , , cos , sin ,r f r f c s       

dx

d
 and 

dy

d


2 2
dx dy

d d 

   
     

   

Therefore the arc length  L  along the polar curve   r f    from     to      is

Example 2.02   

Find the length  L  of the perimeter of the cardioid  1 cosr    
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Example 2.02  (continued) 

Example 2.03  

Find the arc length along the spiral curve   0r ae a  , from     to    . 
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Overview of Normal and Binormal: 

For a curve in 2 , there is a unique normal line at every point 

where the unit tangent vector is defined: 

There are only two choices for the unit normal vector. 

N  is chosen to point in the direction in which the curve is 

turning.   This definition fails wherever the unit tangent does 

not exist.   This definition also fails at all points of inflexion and 

wherever the curve is a straight line. 

However, for a curve in 3 , there is a normal plane at each 

point, not a normal line.   From the infinite number of 

different directions for a normal vector, we need to identify 

a unique direction for a principal normal.   Again, we shall 

choose the direction in which the unit tangent vector is 

turning at each point. 

^
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The unit binormal is at right angles to both tangent and principal normal: 

 B T N

constant B    

The three vectors form an orthonormal set (they are mutually perpendicular and 

each one is a unit vector; that is, magnitude = 1).   All three unit vectors are 

undefined where the curve suddenly reverses direction, (such as at a cusp). 

Curvature: 

The derivative of the unit tangent with respect to distance travelled along a curve is the principal 

normal vector, 
d

ds


T
N .   Its direction is the unit principal normal N .   Its magnitude is a 

measure of how rapidly the curve is turning and is defined to be the curvature: 

d d d

ds dt dt
    

T T r
N

The radius of curvature is 
1




 . 

The radius of curvature at a point on a curve is the radius of the circle which best fits the curve at 

that point. 

Example 2.01 (continued) 

(c) Find the curvature  s  at any point for which 0s  , for the curve

   
T

1 1
4 4

2 sin 2 cos2 sins s s s s   r

where  s  is the arc length from the point  1
4

0, , 0 . 

From part (b): 
2sin

sin cos

cos

s

s s

s

 
 

  
 
 

T

^       ^    ^

^

^ ^

^ ^

^
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Example 2.01 (c) (continued) 

A Maple plot of this curve is available from the demonstration files section of the web site, 

www.engr.mun.ca/~ggeorge/4430/demos/index.html. 
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Another formula for curvature: 

Let and , then
d ds d

s
dt dt dt

   
r r

r r

d d
s

dt dt
  

r r
T r T

d
s s

dt
  

T
r T

But
d

dt


T
^

^

^^

^
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Example 2.04 

Find the curvature and the radius of curvature for the helix, given in parametric form by 

x  =  cos t ,    y  =  sin t ,   z = t .    Assume SI units. 

Let   c = cos t ,    s = sin t . 
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Surfaces of Revolution  

Consider a curve in the x-y plane, defined by the equation  y = f (x). 

If it is swept once around the line  y = c , then it will generate a surface of revolution. 

At any particular value of x, a thin cross-section through that surface, parallel to the y-z plane, 

will be a circular disc of radius r, where  

Let us now view the circular disc face-on, (so that the x axis and the axis of rotation are both 

pointing directly out of the page and the page is parallel to the y-z plane). 

Let (x, y, z) be a general point on the surface of revolution. 

From this diagram, one can see that 

r
2
  =

Therefore, the equation of the surface generated, when the 

curve  y = f (x)  is rotated once around the axis  y = c, is 

Special case:  When the curve  y = f (x)  is rotated once around the x axis, the equation of the 

surface of revolution is  
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Example 2.05 

Find the equation of the surface generated, when the parabola 2 4y ax  is rotated once around 

the x axis. 

A Maple worksheet for this surface is available from the 

demonstration files section of the ENGI 4430 web site. 

The Curved Surface Area of a Surface of Revolution 

For a rotation around the x axis, 

the curved surface area swept out by the element of arc length  

s  is approximately the product of the circumference of a 

circle of radius y with the length  s. 

Integrating along a section of the curve  y = f (x)  from x = a  to  

x = b, the total curved surface area is 

For a rotation of  y = f (x)  about the axis  y = c, the curved surface area is 
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Example 2.06 

Find the curved surface area of the circular paraboloid generated by rotating the portion of the 

parabola  2 4 0y cx c   from  0x a   to  x b a   about the x axis.

2
x b

x a
A y ds




 
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Area Swept Out by a Polar Curve   r  =  f (θ)  

A  Area of triangle 

Example 2.07   

Find the area of a circular sector, radius  r , angle  . 
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Example 2.08   

Find the area swept out by the polar curve r ae  over      ,

(where 0a    and 2      ). 

The condition  2     

prevents the same area being swept 

out more than once. 

In general, the area bounded by two polar curves  r f   and  r g   and the radius vectors

   and    is  

      2 21

2
A f g d




   
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Radial and Transverse Components of Velocity and Acceleration  

At any point P (not at the pole), the unit radial vector r̂  points directly away from the pole.   The 

unit transverse vector θ̂  is orthogonal to r̂  and points in the direction of increasing θ.   These

vectors form an orthonormal basis for 2 . 

Unlike the Cartesian î  and ĵ , if  θ  is not constant then r̂  and θ̂  will be variable unit vectors.

Examine  r̂  and θ̂  at two nearby times  t  and  t t  :

The magnitudes of the unit vectors can never change.   

By definition, the magnitude of any unit vector is always 1.   

Only the directions can change.   

Examine the difference in the unit radial vector at these two times. 
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Therefore the derivatives of the two [non-constant] polar unit vectors are 

ˆ ˆd d

dt dt

 
  
 

r
    and   

ˆ
ˆ

d d

dt dt

 
  

 
r



Using the “overdot” notation to represent differentiation with respect to the parameter t, these 

results may be expressed more compactly as  

ˆ ˆˆ ˆand   r r   

The radial and transverse components of velocity and acceleration then follow: 

ˆr   r r v r

  a v r

The transverse component of acceleration can also be written as 
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Example 2.09  

A particle follows the path r  ,  where the angle at any time is equal to the time: 

0t   .   Find the radial and transverse components of acceleration.

Example 2.10  

For circular motion around the pole, with constant radius r  and constant angular velocity   , 

the velocity vector is purely tangential, ˆrv  , and the acceleration vector is
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Tangential and Normal Components of Velocity and Acceleration 

From page 2.01, we know that the velocity vector is also the tangent vector,  
d

dt
 

r
v T . 

The [scalar] speed is 
d ds

v
dt dt

  
r

v

The speed is therefore the derivative with respect to time of distance travelled along the curve. 

It follows that vv T  - the speed is also the tangential component of the velocity vector. 

There are no components of velocity in the normal directions. 

The acceleration vector is 

 d d
v

dt dt
  

v
a T

^

^
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Example 2.04   (continued) 

Find the tangential and normal components of velocity and acceleration for a particle travelling 

along the helix, given in parametric form by  x = cos t ,    y = sin t ,   z = t .     

Hence find the curvature.   Assume SI units. 

From page 2.09, 

 

cos sin cos

sin cos sin

1 0

t t t
d d

t t t t
dt dt

t

      
     

       
     
          

r v
r v a
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Review of Lines [from MATH 2050] 

Given a point   o o o o, ,P x y z  known to be on a line  L ,

a non-zero vector   
T

a b cd   parallel to the line, 

and vectors  
T

x y zr  and 

 
T

o o o o oOP x y z r  , the equations of the line 

may be expressed in the vector form 

 o ,t t  r r d

or, provided none of  a, b, c  are zero, in the symmetric Cartesian form 

o o ox x y y z z

a b c

  
 

If, for example, b = 0, but  a  and  c  are non-zero, then the Cartesian form becomes 

o o
o ,

x x z z
y y

a c

 
 

Example 2.11 

Find the Cartesian equation of the line through the points (1, 3, 5) and (4, –1, 7). 
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Review of Planes [from MATH 2050] 

A plane    is defined by two vectors   [  is seen here edge-on →]. 

Its orientation is determined by a  

non-zero normal vector  
T

A B Cn .

Its location is determined by the position vector 

 
T

o o o o oOP x y z r  of any one point 
oP  known to be on the plane. 

The vector  
T

x y zr  is then the position vector of a point on the plane if and only if 

or n r n

or, equivalently, 

0Ax By Cz D   

where   o o o oD Ax By Cz     r n

If  u  and v  are two non-zero vectors not parallel to each other and both parallel to the plane, 

then a vector parametric form of the equation of the plane is 

 o , ,s t s t   r r u v

The normal vector to the plane is n u v , from which the other two forms above follow. 

Example 2.12 

Find the Cartesian equation of the plane through the points (0, 3, 5), (2, 4, 5) and (4, –1, 7) and 

find the equation of the normal line to that plane that passes through the origin. 
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Example 2.12   (continued) 

[End of Chapter 2] 
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