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5. Numerical Integration 

 

In some of our previous work, (most notably the evaluation of arc length), it has been 

difficult or impossible to find the indefinite integral.   Various symbolic algebra and 

calculus software packages (such as Maple
®
) may be able to provide either an exact 

answer or a numerical approximation. 

 

In this brief chapter we shall see three numerical schemes for the evaluation of proper 

definite integrals and two methods for finding the zeroes of functions. 

 

In your first course in integral calculus, the definite integral  
b

a
f x dx  was constructed 

as a limit of the sum of the areas of rectangles fitted under the curve  y f x : 

 

 
 

For  n  rectangles of equal width 
b a

h
n


 ,  0,1, 2, ,ix a ih i n     

(so that 0 and nx a x b  ) an approximation is  

   
1

0

n

i

b

ia
f x dx h f x





   

However, unless  h  is very small (which requires a very large number of rectangles), it is 

clear that this approximation can lead to substantial errors. 

 

A better approximation is to join the top left corner of each rectangle to the top left corner 

of the next rectangle, thus replacing the rectangles by trapezoids: 
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Where a curve  y f x  is concave down, the area of a trapezoid 

will be an underestimate of the area under the curve.   Where the 

curve is concave up, the area of the trapezoid will be an 

overestimate of the area under the curve.   The sum of the areas of 

the trapezoids usually provides a better estimate of the area under 

the curve than the sum of the areas of the rectangles does. 

 

The area of the trapezoid with left edge at ix x  is iA   

Abbreviate  if x  by  if .    It follows that  

 

 
b

a
f x dx   
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Example 5.01 

 

Estimate the length along the parabola 2y x  from  x = 0  to  x = 2, using the trapezoidal 

rule with  n = 8. 

 

 

2 2
dy

y x x
dx

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table of values for the trapezoidal rule: 

 

 

 

 

 

 

 

 

 

 

 

    Therefore  
2

0
4.657f x dx   

 

i xi  f (xi ) 2 f (xi ) 

0 0.00 1.000000  

1 0.25 1.118034 2.236068 

2 0.50 1.414214 2.828427 

3 0.75 1.802776 3.605551 

4 1.00 2.236068 4.472136 

5 1.25 2.692582 5.385165 

6 1.50 3.162278 6.324555 

7 1.75 3.640055 7.280110 

8 2.00 4.123106  
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Example 5.01   (continued) 

 

Note:  after more than one substitution, it can be shown that  

   2 2
2 1

2
2 1 4 ln 2 1 42 1 4 sinh 2

1 4
4 4

b

a

b
b

a
a

x x x xx x x
x dx

            
      


 

Therefore the exact value is 
 1sinh 4

17 4.647
4

L



    

The accuracy of the trapezoidal rule does improve with larger numbers of narrower 

intervals, but at the cost of more computations.    

 

In this example, the integrand is concave up everywhere.   Therefore the trapezoidal rule 

will provide an overestimate that is worse for smaller n. 

                        

      

    

 

 

 

 

 

 

Also see the Excel file at "www.engr.mun.ca/~ggeorge/4430/demos/". 

 

 

 

The trapezoidal rule essentially estimates the curve by straight lines between pairs of 

adjacent points.   A further refinement involves fitting a parabola through each set of 

three consecutive points.   The resulting algorithm is Simpson’s Rule: 

 

   0 1 2 2 13 4
4 2 4 2 2 4

3

b

nn n
a

h
f x dx f f f f f f f f           

 

where the number  n  of intervals must be even. 

 

This algorithm is attributed to the eighteenth century British mathematician Thomas 

Simpson, but it was discovered a century earlier by astronomer Johannes Kepler. 

 

 

 

n L 

8 4.6569 

16 4.6493 

32 4.6474 

64 4.6469 

Exact 4.6468 
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Example 5.02 

 

Estimate the length along the parabola 2y x  from  x = 0  to  x = 2, using Simpson’s rule 

with  n = 4. 

 

 

As in Example 5.01, the arc length is  2

2

0

1 4L x dx   . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2

2

0

1 1
1 4 1.000000 5.656854 4.472136 12.64911 4.123106

3 2
L x dx         

4.650L   

which is quite close to the exact answer of 4.647 (to 3 d.p.), given the small number of 

intervals used.   It is a better approximation than the trapezoidal rule with twice as many 

intervals. 

 

i xi f (xi ) 2 f (xi ) 4 f (xi ) 

0 0.00 1.000000   

1 0.50 1.414214  5.656854 

2 1.00 2.236068 4.472136  

3 1.50 3.162278  12.64911 

4 2.00 4.123106   
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Graphical Solution to  f (x) = 0    

 

In cases where it is difficult to find a zero of a function (that is, values of x for which 

  0f x  ) analytically, various numerical schemes exist. 

 

The simplest method is graphical.   Using appropriate software (even a simple handheld 

graphing calculator), just zoom in on the x-axis intercept repeatedly until the desired 

precision is achieved. 

 

 

Example 5.03 

 

Find the solution of  xe x  , correct to five decimal places. 

 

 

From a sketch of the two curves y = x 

and xy e , it is obvious that the only 

solution is somewhere in the interval 

(0, 1). 

 

 

 

 

 

 

 

Graph the curve   xy f x x e   . 

Clearly  f (0)  =  –1  <  0 

and   f (1)  =  1–1/e  >  0 

 

f (x) is continuous and changes sign only once inside (0, 1). 

 

 

 

 

 

Zoom in to the interval  x = 0.5 to 0.6: 

 

Clearly the root of  f (x) = 0  is in 

 (0.565, 0.570). 
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Example 5.03   (continued) 

 

Zooming in again,  

 

 

 

 

 

 

 

 

Now the root is seen to be in (0.5670, 0.5673). 

 

 

 

 

 

 

 

 

 

 

 

The root seems to be in (0.56713, 0.56715).   One final zoom will resolve the fifth 

decimal place. 

 

 

 

 

 

 

 

 

 

Therefore, correct to five decimal places, the solution to xe x   is  x = 0.56714. 

A calculator quickly confirms that 0.56714 0.56714e  . 
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Numerical Solution to  f (x) = 0 
 

Newton’s  Method 

 

From the definition of the derivative, 
0

lim
x

dy y

dx x 





, 

we obtain 
dy

y x
dx

    or, equivalently, 

 
y

x
f x


 


. 

The tangent line to the curve  y f x  at the point  

 P ,n nx y  has slope  nf x . 

 

Follow the tangent line down to its x axis intercept. 

That intercept is the next approximation 1nx  . 

 1 0n n nny y y y f x        and 

1 nnx x x    

 

 1
n

nn

n

f x
x x

f x
   


 

If nx  is the n
th

 approximation to the equation   0f x  , then a better approximation may 

be 

 

 1
n

nn
n

f x
x x

f x  


 

 

which is Newton’s method, (first developed in a work of Sir Isaac Newton, written in 

1669 but not published until 1711). 
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Example 5.04    

 

Find the solution of xx e , correct to 5 decimal places. 

 

 

From a sketch of the two curves y = x 

and xy e , it is obvious that the only 

solution is somewhere in the interval 

(0, 1).   A reasonable first guess is  

0
1
2

.x   

 

  xf x x e       1 xf x e      

 

  1

n n
n n

n

n

n

x

x

f x x e
x x

f x e






   

 
. 

 

Table of consecutive values: 

 

nx   n n
nx

f x x e


     1n
nx

f x e
    

 

 
n

n

f x

f x
 

0.500000 –0.106531 1.606531 –0.066311 

0.566311 –0.001305 1.567616 –0.000832 

0.567143  0.000000 1.567143  0.000000 

0.567143    

 

Correct to five decimal places, the solution to xx e  is  x = 0.56714 . 

In fact, we have the root correct to six decimal places,  x = 0.567143. 

 

A spreadsheet to demonstrate Newton’s method for this example is available from the 

course web site, at "www.engr.mun.ca/~ggeorge/4430/demos/". 

 

This method converges more rapidly than the graphical method, but requires more 

computational effort. 

 

 

Caution: 

Newton’s method can fail if   0f x   in the neighbourhood of the root.   A shallow 

tangent line could result in a sequence of approximations that fails to converge to the 

correct value.   This method also should not be used near any discontinuities in  f x . 

 

There is a wealth of other methods for numerical integration and for the numerical 

solution of various equations, which we do not have the time to explore in this course. 
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Example 5.04   (additional note) 

 

Graph of   xf x x e  ,  Graph of   xf x e x   

 

or, if  y = x  and xy e  are 

taken the other way around, 

 

 

 

 

 

 

 

 

 

 

Reversing the order of the two functions reverses the signs of all entries in the table for 

the second and third columns,  nf x  and  nf x , but the entries in the first  nx  and 

last 
 

 
n

n

f x

f x

 
   

 columns will be exactly the same.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[End of Chapter 5] 
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