7. Conversions between Coordinate Systems

In general, the conversion of a vector $\vec{\mathbf{F}} = F_x \hat{\mathbf{i}} + F_y \hat{\mathbf{j}} + F_z \hat{\mathbf{k}}$ from Cartesian coordinates (x, y, z) to another orthonormal coordinate system (u, v, w) in \mathbb{R}^3 (where "orthonormal" means that the new basis vectors $\hat{\mathbf{u}}$, $\hat{\mathbf{v}}$, $\hat{\mathbf{w}}$ are mutually orthogonal and of unit length) is given by $\vec{\mathbf{F}} = F_x \hat{\mathbf{i}} + F_y \hat{\mathbf{j}} + F_z \hat{\mathbf{k}} = F_u \hat{\mathbf{u}} + F_v \hat{\mathbf{v}} + F_w \hat{\mathbf{w}}$.

However, $F_u = \bar{\mathbf{F}} \cdot \hat{\mathbf{u}} = \left(F_x \hat{\mathbf{i}} + F_y \hat{\mathbf{j}} + F_z \hat{\mathbf{k}} \right) \cdot \hat{\mathbf{u}} = \left(\hat{\mathbf{i}} \cdot \hat{\mathbf{u}} \right) F_x + \left(\hat{\mathbf{j}} \cdot \hat{\mathbf{u}} \right) F_y + \left(\hat{\mathbf{k}} \cdot \hat{\mathbf{u}} \right) F_z$. F_v and F_w are defined similarly in terms of the Cartesian components F_x , F_y , F_z . In matrix form

$$\begin{bmatrix} F_u \\ F_v \\ F_w \end{bmatrix} = \begin{bmatrix} \hat{\mathbf{i}} \cdot \hat{\mathbf{u}} & \hat{\mathbf{j}} \cdot \hat{\mathbf{u}} & \hat{\mathbf{k}} \cdot \hat{\mathbf{u}} \\ \hat{\mathbf{i}} \cdot \hat{\mathbf{v}} & \hat{\mathbf{j}} \cdot \hat{\mathbf{v}} & \hat{\mathbf{k}} \cdot \hat{\mathbf{v}} \\ \hat{\mathbf{i}} \cdot \hat{\mathbf{w}} & \hat{\mathbf{j}} \cdot \hat{\mathbf{w}} & \hat{\mathbf{k}} \cdot \hat{\mathbf{w}} \end{bmatrix} \begin{bmatrix} F_x \\ F_y \\ F_z \end{bmatrix}.$$

The matrices on the right hand side of the equation will contain a mixture of expressions in the new (u, v, w) and old (x, y, z) coordinates. This needs to be converted into a set of expressions in (u, v, w) only.

Example 7.01

Express the vector $\vec{\mathbf{F}} = y\hat{\mathbf{i}} - x\hat{\mathbf{j}} + z\hat{\mathbf{k}}$ in cylindrical polar coordinates.

x y plane: coordinates

x y plane: basis vectors

$$\mathbf{i} \cdot \hat{\boldsymbol{\rho}} =$$

$$z =$$

$$\hat{\mathbf{k}} \cdot \hat{\mathbf{o}} =$$

Example 7.01 (continued)

$$\hat{\mathbf{i}} \cdot \hat{\boldsymbol{\phi}} = \hat{\mathbf{i}} \cdot \hat{\mathbf{k}} =$$

$$\hat{\mathbf{j}} \cdot \hat{\boldsymbol{\phi}} = \hat{\mathbf{j}} \cdot \hat{\mathbf{k}} =$$

$$\hat{\mathbf{k}} \cdot \hat{\boldsymbol{\phi}} = \hat{\mathbf{k}} \cdot \hat{\mathbf{k}} =$$

The coefficient conversion matrix from Cartesian to cylindrical polar is therefore

Letting $c \equiv \cos \phi$, $s \equiv \sin \phi$:

$$\vec{\mathbf{F}}_{polar} =$$

We can also generate the coordinate transformation matrix from Cartesian coordinates (x, y, z) to **spherical polar** coordinates (r, θ, ϕ) .

[θ is the declination (angle down from the north pole, $0 \le \theta \le \pi$) and ϕ is the azimuth (angle around the equator $0 \le \phi < 2\pi$).]

[Vertical] Plane containing z-axis and radial vector $\vec{\mathbf{r}}$:

[Horizontal] Plane $z = r \cos \theta$:

The conversion matrix from Cartesian to spherical polar coordinates is then

$$\begin{bmatrix} \hat{\mathbf{i}} \cdot \hat{\mathbf{r}} & \hat{\mathbf{j}} \cdot \hat{\mathbf{r}} & \hat{\mathbf{k}} \cdot \hat{\mathbf{r}} \\ \hat{\mathbf{i}} \cdot \hat{\boldsymbol{\theta}} & \hat{\mathbf{j}} \cdot \hat{\boldsymbol{\theta}} & \hat{\mathbf{k}} \cdot \hat{\boldsymbol{\theta}} \\ \hat{\mathbf{i}} \cdot \hat{\boldsymbol{\phi}} & \hat{\mathbf{j}} \cdot \hat{\boldsymbol{\phi}} & \hat{\mathbf{k}} \cdot \hat{\boldsymbol{\phi}} \end{bmatrix} = \begin{bmatrix} \sin \theta \cos \phi & \sin \theta \sin \phi & \cos \theta \\ \cos \theta \cos \phi & \cos \theta \sin \phi & -\sin \theta \\ -\sin \phi & \cos \phi & 0 \end{bmatrix}$$

Example 7.02

Convert $\vec{\mathbf{F}} = y\hat{\mathbf{i}} - x\hat{\mathbf{j}}$ to spherical polar coordinates.

Let
$$c_{\theta} \equiv \cos \theta$$
, $s_{\theta} \equiv \sin \theta$, $c_{\phi} \equiv \cos \phi$, $s_{\phi} \equiv \sin \phi$

$$ec{\mathbf{F}} = egin{bmatrix} F_r \ F_{ heta} \ F_{\phi} \end{bmatrix} =$$

Expressions for the gradient, divergence, curl and Laplacian operators in any orthonormal coordinate system will follow later in this chapter.

Summary for Coordinate Conversion:

To convert a vector expressed in Cartesian components $v_x \hat{\mathbf{i}} + v_y \hat{\mathbf{j}} + v_z \hat{\mathbf{k}}$ into the equivalent vector expressed in <u>cylindrical polar coordinates</u> $v_\rho \hat{\boldsymbol{\rho}} + v_\phi \hat{\boldsymbol{\phi}} + v_z \hat{\mathbf{k}}$, express the Cartesian components v_x, v_y, v_z in terms of (ρ, ϕ, z) using $x = \rho \cos \phi$, $y = \rho \sin \phi$, z = z; then evaluate

$$\begin{bmatrix} v_{\rho} \\ v_{\phi} \\ v_{z} \end{bmatrix} = \begin{bmatrix} \cos \phi & \sin \phi & 0 \\ -\sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v_{x} \\ v_{y} \\ v_{z} \end{bmatrix}$$

Use the inverse matrix to transform back to Cartesian coordinates:

$$\begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix} = \begin{bmatrix} \cos \phi & -\sin \phi & 0 \\ \sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v_\rho \\ v_\phi \\ v_z \end{bmatrix}$$

To convert a vector expressed in Cartesian components $v_x \hat{\mathbf{i}} + v_y \hat{\mathbf{j}} + v_z \hat{\mathbf{k}}$ into the equivalent vector expressed in **spherical polar** coordinates $v_r \hat{\mathbf{r}} + v_\theta \hat{\boldsymbol{\theta}} + v_\phi \hat{\boldsymbol{\phi}}$, express the Cartesian components v_x, v_y, v_z in terms of (r, θ, ϕ) using $x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$, $z = r \cos \theta$; then evaluate

$$\begin{bmatrix} v_r \\ v_\theta \\ v_\phi \end{bmatrix} = \begin{bmatrix} \sin\theta\cos\phi & \sin\theta\sin\phi & \cos\theta \\ \cos\theta\cos\phi & \cos\theta\sin\phi & -\sin\theta \\ -\sin\phi & \cos\phi & 0 \end{bmatrix} \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix}$$

Use the inverse matrix to transform back to Cartesian coordinates:

$$\begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix} = \begin{bmatrix} \sin\theta\cos\phi & \cos\theta\cos\phi & -\sin\phi \\ \sin\theta\sin\phi & \cos\theta\sin\phi & \cos\phi \\ \cos\theta & -\sin\theta & 0 \end{bmatrix} \begin{bmatrix} v_r \\ v_\theta \\ v_\phi \end{bmatrix}$$

Note that, in both cases, the transformation matrix A is orthogonal, so that $A^{-1} = A^{T}$. This is not true for most square matrices A, but it is generally true for transformations between orthonormal coordinate systems.

Basis Vectors in Other Coordinate Systems

In the <u>Cartesian</u> coordinate system, all three basis vectors are absolute constants:

$$\frac{d}{dt}\,\hat{\mathbf{i}} = \frac{d}{dt}\,\hat{\mathbf{j}} = \frac{d}{dt}\,\hat{\mathbf{k}} = \bar{\mathbf{0}}$$

The derivative of a vector is then straightforward to calculate:

$$\frac{d}{dt}\left(f_1\hat{\mathbf{i}} + f_2\hat{\mathbf{j}} + f_3\hat{\mathbf{k}}\right) = \hat{\mathbf{i}}\frac{df_1}{dt} + \hat{\mathbf{j}}\frac{df_2}{dt} + \hat{\mathbf{k}}\frac{df_3}{dt}$$

But most non-Cartesian basis vectors are not constant.

Cylindrical Polar:

$$\hat{\boldsymbol{\rho}} =$$

$$\hat{\phi} =$$

$$\hat{\mathbf{k}} = \hat{\mathbf{k}}$$

Let
$$\dot{\vec{\mathbf{v}}} \equiv \frac{d\vec{\mathbf{v}}}{dt}$$
 then $\dot{\hat{\boldsymbol{\rho}}} =$

$$\dot{\hat{\phi}} =$$

$$\dot{\hat{\mathbf{k}}} =$$

Therefore if a vector $\vec{\mathbf{F}}$ is described in cylindrical polar coordinates

$$\vec{\mathbf{F}} = F_{\rho} \hat{\boldsymbol{\rho}} + F_{\phi} \hat{\boldsymbol{\phi}} + F_{z} \hat{\mathbf{k}} , \quad \text{then}$$

$$\dot{\vec{F}} \; = \;$$

In particular, the displacement vector is $\vec{\mathbf{r}}(t) = \rho(t)\hat{\boldsymbol{\rho}} + 0\hat{\boldsymbol{\phi}} + z(t)\hat{\mathbf{k}}$, so that the velocity vector is

$$\vec{\mathbf{v}} = \frac{d\vec{\mathbf{r}}}{dt} = \frac{d\rho}{dt}\hat{\boldsymbol{\rho}} + \rho \frac{d\phi}{dt}\hat{\boldsymbol{\phi}} + \frac{dz}{dt}\hat{\mathbf{k}}$$

Example 7.03

Find the velocity and acceleration in cylindrical polar coordinates for a particle travelling along the helix $x = 3\cos 2t$, $y = 3\sin 2t$, z = t.

Cylindrical polar coordinates: $x = \rho \cos \phi$, $y = \rho \sin \phi$, z = z

$$\Rightarrow \rho^2 = x^2 + y^2, \quad \tan \phi = \frac{y}{x}$$

Alternative derivation of cylindrical polar basis vectors

On page 7.02 we derived the coordinate conversion matrix A to convert a vector expressed in Cartesian components $v_x \hat{\mathbf{i}} + v_y \hat{\mathbf{j}} + v_z \hat{\mathbf{k}}$ into the equivalent vector expressed in cylindrical polar coordinates $v_\rho \hat{\boldsymbol{\rho}} + v_\phi \hat{\boldsymbol{\phi}} + v_z \hat{\mathbf{k}}$

$$\begin{bmatrix} v_{\rho} \\ v_{\phi} \\ v_{z} \end{bmatrix} = A \begin{bmatrix} v_{x} \\ v_{y} \\ v_{z} \end{bmatrix} = \begin{bmatrix} \cos \phi & \sin \phi & 0 \\ -\sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v_{x} \\ v_{y} \\ v_{z} \end{bmatrix}$$

and its inverse A-1

$$\begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix} = \mathbf{A}^{-1} \begin{bmatrix} v_\rho \\ v_\phi \\ v_z \end{bmatrix} = \begin{bmatrix} \cos\phi & -\sin\phi & 0 \\ \sin\phi & \cos\phi & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v_\rho \\ v_\phi \\ v_z \end{bmatrix}$$

For any 3×3 matrix M,

$$M\begin{bmatrix} 1\\0\\0\end{bmatrix} = \text{ the first column of M; } M\begin{bmatrix} 0\\1\\0\end{bmatrix} = \text{ the second column of M; and } M\begin{bmatrix} 0\\0\\1\end{bmatrix} = \text{ the third column of M}$$

Note that $\hat{\rho} = 1 \hat{\rho} + 0 \hat{\phi} + 0 \hat{k}$, so that the Cartesian form of $\hat{\rho}$ is

$$\hat{\boldsymbol{\rho}} = \begin{bmatrix} \cos \phi & -\sin \phi & 0 \\ \sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} \cos \phi \\ \sin \phi \\ 0 \end{bmatrix} = \cos \phi \,\hat{\mathbf{i}} + \sin \phi \,\hat{\mathbf{j}}$$

Similarly

$$\hat{\boldsymbol{\phi}} = \begin{bmatrix} \cos \phi & -\sin \phi & 0 \\ \sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -\sin \phi \\ \cos \phi \\ 0 \end{bmatrix} = -\sin \phi \,\hat{\mathbf{i}} + \cos \phi \,\hat{\mathbf{j}}$$

Therefore the columns of A⁻¹ (and therefore the rows of A) are just the Cartesian components of the three cylindrical polar basis vectors.

Spherical Polar Coordinates

The coordinate conversion matrix also provides a quick route to finding the Cartesian components of the three basis vectors of the spherical polar coordinate system.

$$\hat{\mathbf{r}} = 1\hat{\mathbf{r}} + 0\hat{\boldsymbol{\theta}} + 0\hat{\boldsymbol{\phi}} = \begin{bmatrix} 1\\0\\0 \end{bmatrix}_{sph}$$

$$\hat{\mathbf{r}} = \begin{bmatrix} 1\\0\\0 \end{bmatrix} \Rightarrow \begin{bmatrix} r_x\\r_y\\r_z \end{bmatrix} = \mathbf{A}^{-1} \begin{bmatrix} 1\\0\\0 \end{bmatrix} = \begin{bmatrix} \sin\theta\cos\phi & \cos\theta\cos\phi & -\sin\phi\\\sin\theta\sin\phi & \cos\theta\sin\phi & \cos\phi\\\cos\theta & -\sin\theta & 0 \end{bmatrix} \begin{bmatrix} 1\\0\\0 \end{bmatrix} = \begin{bmatrix} \sin\theta\cos\phi\\\sin\theta\sin\phi & \cos\theta\\\cos\theta & -\sin\theta & 0 \end{bmatrix}$$

 $\Rightarrow \hat{\mathbf{r}} = \sin\theta\cos\phi\,\hat{\mathbf{i}} + \sin\theta\sin\phi\,\hat{\mathbf{j}} + \cos\theta\,\hat{\mathbf{k}}$

$$\hat{\boldsymbol{\theta}} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \implies \begin{bmatrix} \theta_x \\ \theta_y \\ \theta_z \end{bmatrix} = \mathbf{A}^{-1} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \sin\theta\cos\phi & \cos\theta\cos\phi & -\sin\phi \\ \sin\theta\sin\phi & \cos\theta\sin\phi & \cos\phi \\ \cos\theta & -\sin\theta & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \cos\theta\cos\phi \\ \cos\theta\sin\phi \\ -\sin\theta \end{bmatrix}$$

 $\Rightarrow \hat{\boldsymbol{\theta}} = \cos\theta\cos\phi\,\hat{\mathbf{i}} + \cos\theta\sin\phi\,\hat{\mathbf{j}} - \sin\theta\,\hat{\mathbf{k}}$

$$\hat{\boldsymbol{\phi}} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \implies \begin{bmatrix} \phi_x \\ \phi_y \\ \phi_z \end{bmatrix} = \mathbf{A}^{-1} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \sin\theta\cos\phi & \cos\theta\cos\phi & -\sin\phi \\ \sin\theta\sin\phi & \cos\theta\sin\phi & \cos\phi \\ \cos\theta & -\sin\theta & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -\sin\phi \\ \cos\phi \\ 0 \end{bmatrix}$$

$$\Rightarrow \hat{\boldsymbol{\phi}} = -\sin\phi \,\hat{\mathbf{i}} + \cos\phi \,\hat{\mathbf{j}}$$

Again, the Cartesian components of the basis vectors are just the columns of A^{-1} (which are also the rows of A). This is true for any orthonormal coordinate system.

These expressions for $\hat{\mathbf{r}}$, $\hat{\boldsymbol{\theta}}$, $\hat{\boldsymbol{\phi}}$ can also be found geometrically [available on the course web site].

Derivatives of the Spherical Polar Basis Vectors

$$\hat{\mathbf{r}} = \sin \theta \cos \phi \,\hat{\mathbf{i}} + \sin \theta \sin \phi \,\hat{\mathbf{j}} + \cos \theta \,\hat{\mathbf{k}}$$

$$\Rightarrow \frac{d\hat{\mathbf{r}}}{dt} =$$

$$\hat{\boldsymbol{\theta}} = \cos \theta \cos \phi \, \hat{\mathbf{i}} + \cos \theta \sin \phi \, \hat{\mathbf{j}} - \sin \theta \, \hat{\mathbf{k}}$$

$$\Rightarrow \frac{d\hat{\boldsymbol{\theta}}}{dt} =$$

$$\hat{\phi} = -\sin\phi \,\hat{\mathbf{i}} + \cos\phi \,\hat{\mathbf{j}}$$

$$\Rightarrow \frac{d\hat{\phi}}{dt} =$$

In particular, the displacement vector is $\vec{\mathbf{r}} = r\hat{\mathbf{r}}$, so that the velocity vector is

$$\bar{\mathbf{v}} = \frac{d\bar{\mathbf{r}}}{dt} = \frac{dr}{dt}\hat{\mathbf{r}} + r\frac{d\hat{\mathbf{r}}}{dt} = \frac{dr}{dt}\hat{\mathbf{r}} + r\left(\frac{d\theta}{dt}\hat{\boldsymbol{\theta}} + \sin\theta\frac{d\phi}{dt}\hat{\boldsymbol{\phi}}\right)$$

$$\Rightarrow \bar{\mathbf{v}} = \frac{dr}{dt}\hat{\mathbf{r}} + r\frac{d\theta}{dt}\hat{\boldsymbol{\theta}} + r\sin\theta\frac{d\phi}{dt}\hat{\boldsymbol{\phi}}$$

It can be shown that the acceleration vector in the spherical polar coordinate system is

$$\vec{\mathbf{a}} = \frac{d\vec{\mathbf{v}}}{dt} = \left(\frac{d^2r}{dt^2} - r\left(\left(\frac{d\theta}{dt}\right)^2 + \left(\frac{d\phi}{dt}\right)^2 \sin^2\theta\right)\right)\hat{\mathbf{r}}$$

$$+ \left(\frac{1}{r}\frac{d}{dt}\left(r^2\frac{d\theta}{dt}\right) - \frac{r}{2}\left(\frac{d\phi}{dt}\right)^2 \sin 2\theta\right)\hat{\boldsymbol{\theta}}$$

$$+ \left(\frac{1}{r\sin\theta}\frac{d}{dt}\left(r^2\frac{d\phi}{dt}\sin^2\theta\right)\right)\hat{\boldsymbol{\phi}}$$

Compare this to the Cartesian equivalent $\vec{\mathbf{a}} = \frac{d^2x}{dt^2}\hat{\mathbf{i}} + \frac{d^2y}{dt^2}\hat{\mathbf{j}} + \frac{d^2z}{dt^2}\hat{\mathbf{k}}$!

Example 7.04

Find the velocity vector $\vec{\mathbf{v}}$ for a particle whose displacement vector $\vec{\mathbf{r}}$, in spherical polar coordinates, is given by r = 4, $\theta = t$, $\phi = 2t$, $(0 < t < \pi)$.

$$r=4$$
, $\theta=t$, $\phi=2t$ \Rightarrow $\frac{dr}{dt}=0$, $\frac{d\theta}{dt}=1$, $\frac{d\phi}{dt}=2$

$$\vec{\mathbf{v}} = \frac{dr}{dt}\hat{\mathbf{r}} + r\frac{d\theta}{dt}\hat{\boldsymbol{\theta}} + r\sin\theta\frac{d\phi}{dt}\hat{\boldsymbol{\phi}}$$

Summary:

Cylindrical Polar:

$$\frac{d}{dt}\hat{\boldsymbol{\rho}} = \frac{d\phi}{dt}\hat{\boldsymbol{\phi}}$$
$$\frac{d}{dt}\hat{\boldsymbol{\phi}} = -\frac{d\phi}{dt}\hat{\boldsymbol{\rho}}$$
$$\frac{d}{dt}\hat{\mathbf{k}} = \bar{\mathbf{0}}$$

$$\vec{\mathbf{r}} = \rho \,\hat{\boldsymbol{\rho}} + z \,\hat{\mathbf{k}}$$
 \Rightarrow $\vec{\mathbf{v}} = \dot{\rho} \,\hat{\boldsymbol{\rho}} + \rho \dot{\phi} \,\hat{\boldsymbol{\phi}} + \dot{z} \,\hat{\mathbf{k}}$

Spherical Polar:

$$\frac{d\hat{\mathbf{r}}}{dt} = \frac{d\theta}{dt}\hat{\boldsymbol{\theta}} + \sin\theta \frac{d\phi}{dt}\hat{\boldsymbol{\phi}}$$

$$\frac{d\hat{\boldsymbol{\theta}}}{dt} = -\frac{d\theta}{dt}\hat{\mathbf{r}} + \cos\theta \frac{d\phi}{dt}\hat{\boldsymbol{\phi}}$$

$$\frac{d\hat{\boldsymbol{\phi}}}{dt} = -\left(\sin\theta\,\hat{\mathbf{r}} + \cos\theta\,\hat{\boldsymbol{\theta}}\right)\frac{d\phi}{dt}$$

$$\vec{\mathbf{r}} = r \,\hat{\mathbf{r}}$$
 $\Rightarrow \vec{\mathbf{v}} = \dot{r} \,\hat{\mathbf{r}} + r \dot{\theta} \,\hat{\boldsymbol{\theta}} + r \sin\theta \,\dot{\phi} \,\hat{\boldsymbol{\phi}}$

Gradient Operator in Other Coordinate Systems

For any orthogonal curvilinear coordinate system (u_1, u_2, u_3) in \mathbb{R}^3 ,

a tangent vector along the u_i curvilinear axis is $\vec{\mathbf{T}}_i = \frac{\partial \vec{\mathbf{r}}}{\partial u_i}$

The unit tangent vectors along the curvilinear axes are $\hat{\mathbf{e}}_i = \mathbf{T}_i = \frac{1}{h_i} \frac{\partial \vec{\mathbf{r}}}{\partial u_i}$,

where the scale factors $h_i = \left| \frac{\partial \vec{\mathbf{r}}}{\partial u_i} \right|$.

The displacement vector $\vec{\mathbf{r}}$ can then be written as $\vec{\mathbf{r}} = u_1 \hat{\mathbf{e}}_1 + u_2 \hat{\mathbf{e}}_2 + u_3 \hat{\mathbf{e}}_3$, where the unit vectors $\hat{\mathbf{e}}_i$ form an **orthonormal basis** for \mathbb{R}^3 :

$$\hat{\mathbf{e}}_{i} \cdot \hat{\mathbf{e}}_{j} = \delta_{ij} = \begin{cases} 0 & (i \neq j) \\ 1 & (i = j) \end{cases}$$

[δ_{ij} is the "Kronecker delta".]

The differential displacement vector $\mathbf{d}\tilde{\mathbf{r}}$ is (by the Chain Rule)

$$\mathbf{d}\mathbf{r} = \frac{\partial \mathbf{r}}{\partial u_1} du_1 + \frac{\partial \mathbf{r}}{\partial u_2} du_2 + \frac{\partial \mathbf{r}}{\partial u_3} du_3 = h_1 du_1 \hat{\mathbf{e}}_1 + h_2 du_2 \hat{\mathbf{e}}_2 + h_3 du_3 \hat{\mathbf{e}}_3$$

which leads to a more general expression for the velocity vector (compared to those of the preceding page):

$$\vec{\mathbf{v}} = \frac{d\vec{\mathbf{r}}}{dt} = h_1 \frac{du_1}{dt} \hat{\mathbf{e}}_1 + h_2 \frac{du_2}{dt} \hat{\mathbf{e}}_2 + h_3 \frac{du_3}{dt} \hat{\mathbf{e}}_3$$

The differential arc length ds is

$$ds^{2} = d\vec{\mathbf{r}} \cdot d\vec{\mathbf{r}} = (h_{1} du_{1})^{2} + (h_{2} du_{2})^{2} + (h_{3} du_{3})^{2}$$

The element of volume dV is

$$dV = h_1 h_2 h_3 \ du_1 du_2 du_3 = \begin{vmatrix} \frac{\partial(x, y, z)}{\partial(u_1, u_2, u_3)} \end{vmatrix} du_1 du_2 du_3$$
$$= \begin{vmatrix} \frac{\partial x}{\partial u_1} & \frac{\partial y}{\partial u_1} & \frac{\partial z}{\partial u_1} \\ \frac{\partial x}{\partial u_2} & \frac{\partial y}{\partial u_2} & \frac{\partial z}{\partial u_2} \\ \frac{\partial x}{\partial u_3} & \frac{\partial y}{\partial u_3} & \frac{\partial z}{\partial u_3} \end{vmatrix} du_1 du_2 du_3$$

$$\vec{\nabla} = \frac{\hat{\mathbf{e}}_1}{h_1} \frac{\partial}{\partial u_1} + \frac{\hat{\mathbf{e}}_2}{h_2} \frac{\partial}{\partial u_2} + \frac{\hat{\mathbf{e}}_3}{h_3} \frac{\partial}{\partial u_3}$$

$$\vec{\nabla}V = \frac{\hat{\mathbf{e}}_1}{h_1} \frac{\partial V}{\partial u_1} + \frac{\hat{\mathbf{e}}_2}{h_2} \frac{\partial V}{\partial u_2} + \frac{\hat{\mathbf{e}}_3}{h_3} \frac{\partial V}{\partial u_3}$$

$$\vec{\nabla} \bullet \vec{\mathbf{F}} = \frac{1}{h_1 h_2 h_3} \left(\frac{\partial (h_2 h_3 f_1)}{\partial u_1} + \frac{\partial (h_3 h_1 f_2)}{\partial u_2} + \frac{\partial (h_1 h_2 f_3)}{\partial u_3} \right)$$

$$\vec{\nabla} \times \vec{\mathbf{F}} = \frac{1}{h_1 h_2 h_3} \begin{vmatrix} h_1 \hat{\mathbf{e}}_1 & h_2 \hat{\mathbf{e}}_2 & h_3 \hat{\mathbf{e}}_3 \\ \frac{\partial}{\partial u_1} & \frac{\partial}{\partial u_2} & \frac{\partial}{\partial u_3} \\ h_1 f_1 & h_2 f_2 & h_3 f_3 \end{vmatrix} = \frac{1}{h_1 h_2 h_3} \begin{vmatrix} h_1 \hat{\mathbf{e}}_1 & \frac{\partial}{\partial u_1} & h_1 f_1 \\ h_2 \hat{\mathbf{e}}_2 & \frac{\partial}{\partial u_2} & h_2 f_2 \\ h_3 \hat{\mathbf{e}}_3 & \frac{\partial}{\partial u_3} & h_3 f_3 \end{vmatrix}$$

$$\nabla^2 V = \frac{1}{h_1 h_2 h_3} \left(\frac{\partial}{\partial u_1} \left(\frac{h_2 h_3}{h_1} \frac{\partial V}{\partial u_1} \right) + \frac{\partial}{\partial u_2} \left(\frac{h_3 h_1}{h_2} \frac{\partial V}{\partial u_2} \right) + \frac{\partial}{\partial u_3} \left(\frac{h_1 h_2}{h_3} \frac{\partial V}{\partial u_3} \right) \right)$$

Cartesian:

$$h_x = h_y = h_z = 1$$

Cylindrical polar:

$$h_{\rho} = h_z = 1$$
, $h_{\phi} = \rho$

Spherical polar:

$$h_r = 1$$
, $h_{\theta} = r$, $h_{\phi} = r \sin \theta$

The familiar expressions then follow for the Cartesian coordinate system.

In <u>cylindrical polar coordinates</u>, naming the three basis vectors as $\hat{\rho}$, $\hat{\phi}$, \hat{k} , we have:

$$\vec{\mathbf{r}} = \rho \hat{\boldsymbol{\rho}} + 0 \hat{\boldsymbol{\phi}} + z \hat{\mathbf{k}} = [\rho \ 0 \ z]^{\mathrm{T}}$$

The relationship to the Cartesian coordinate system is

$$x = \rho \cos \phi$$
, $y = \rho \sin \phi$, $z = z$ \Rightarrow $\rho^2 = x^2 + y^2$, $\tan \phi = \frac{y}{x}$

One scale factor is

$$h_{\rho} = \left| \frac{\partial \bar{\mathbf{r}}}{\partial \rho} \right| =$$

In a similar way, we can confirm that $h_{\phi} = \rho$ and $h_z = 1$.

In cylindrical polar coordinates,

$$dV =$$

$$ds^2 =$$

$$\vec{\nabla}V =$$

$$\vec{\nabla} \cdot \vec{F} =$$

$$\vec{\nabla}{\times}\vec{F}\,=\,$$

$$\nabla^2 V =$$

All of the above are undefined on the z-axis ($\rho = 0$), where there is a coordinate singularity. However, by taking the limit as $\rho \to 0$, we may obtain well-defined values for some or all of the above expressions.

Given that the gradient operator in a general curvilinear coordinate system is

$$\vec{\nabla} = \left(\frac{\hat{\mathbf{e}}_1}{h_1} \frac{\partial}{\partial u_1} + \frac{\hat{\mathbf{e}}_2}{h_2} \frac{\partial}{\partial u_2} + \frac{\hat{\mathbf{e}}_3}{h_3} \frac{\partial}{\partial u_3}\right), \text{ why isn't the divergence of}$$

$$\vec{\mathbf{F}} = F_1 \hat{\mathbf{e}}_1 + F_2 \hat{\mathbf{e}}_2 + F_3 \hat{\mathbf{e}}_3 \text{ equal, in general, to } \left(\frac{1}{h_1} \frac{\partial F_1}{\partial u_1} + \frac{1}{h_2} \frac{\partial F_2}{\partial u_2} + \frac{1}{h_3} \frac{\partial F_3}{\partial u_3}\right)?$$

The quick answer is that the differential operators operate not just on the components F_1, F_2, F_3 , but also on the basis vectors $\hat{\mathbf{e}}_1, \hat{\mathbf{e}}_2, \hat{\mathbf{e}}_3$. In most orthonormal coordinate systems, these basis vectors are not constant. The divergence therefore contains additional terms.

$$\begin{split} &\left(\frac{\mathbf{e}_{1}}{h_{1}}\frac{\partial}{\partial u_{1}}+\frac{\mathbf{e}_{2}}{h_{2}}\frac{\partial}{\partial u_{2}}+\frac{\mathbf{e}_{3}}{h_{3}}\frac{\partial}{\partial u_{3}}\right)\bullet\left(F_{1}\mathbf{e}_{1}+F_{2}\mathbf{e}_{2}+F_{3}\mathbf{e}_{3}\right)=\\ &\left(\frac{\mathbf{e}_{1}\bullet\mathbf{e}_{1}}{h_{1}}\frac{\partial F_{1}}{\partial u_{1}}+\frac{F_{1}}{h_{1}}\mathbf{e}_{1}\bullet\frac{\partial \mathbf{e}_{1}}{\partial u_{1}}\right)+\left(\frac{\mathbf{e}_{2}\bullet\mathbf{e}_{1}}{h_{2}}\frac{\partial F_{1}}{\partial u_{2}}+\frac{F_{1}}{h_{2}}\mathbf{e}_{2}\bullet\frac{\partial \mathbf{e}_{1}}{\partial u_{2}}\right)+\left(\frac{\mathbf{e}_{3}\bullet\mathbf{e}_{1}}{h_{3}}\frac{\partial F_{1}}{\partial u_{3}}+\frac{F_{1}}{h_{3}}\mathbf{e}_{3}\bullet\frac{\partial \mathbf{e}_{1}}{\partial u_{3}}\right)+\\ &\left(\frac{\mathbf{e}_{1}\bullet\mathbf{e}_{2}}{h_{1}}\frac{\partial F_{2}}{\partial u_{1}}+\frac{F_{2}}{h_{1}}\mathbf{e}_{1}\bullet\frac{\partial \mathbf{e}_{2}}{\partial u_{1}}\right)+\left(\frac{\mathbf{e}_{2}\bullet\mathbf{e}_{2}}{h_{2}}\frac{\partial F_{2}}{\partial u_{2}}+\frac{F_{2}}{h_{2}}\mathbf{e}_{2}\bullet\frac{\partial \mathbf{e}_{2}}{\partial u_{2}}\right)+\left(\frac{\mathbf{e}_{3}\bullet\mathbf{e}_{2}}{h_{3}}\frac{\partial F_{2}}{\partial u_{3}}+\frac{F_{2}}{h_{3}}\mathbf{e}_{3}\bullet\frac{\partial \mathbf{e}_{2}}{\partial u_{3}}\right)+\\ &\left(\frac{\mathbf{e}_{1}\bullet\mathbf{e}_{3}}{h_{1}}\frac{\partial F_{3}}{\partial u_{1}}+\frac{F_{3}}{h_{1}}\mathbf{e}_{1}\bullet\frac{\partial \mathbf{e}_{3}}{\partial u_{1}}\right)+\left(\frac{\mathbf{e}_{2}\bullet\mathbf{e}_{3}}{h_{2}}\frac{\partial F_{3}}{\partial u_{2}}+\frac{F_{3}}{h_{2}}\mathbf{e}_{2}\bullet\frac{\partial \mathbf{e}_{3}}{\partial u_{2}}\right)+\left(\frac{\mathbf{e}_{3}\bullet\mathbf{e}_{3}}{h_{3}}\frac{\partial F_{3}}{\partial u_{3}}+\frac{F_{3}}{h_{3}}\mathbf{e}_{3}\bullet\frac{\partial \mathbf{e}_{3}}{\partial u_{3}}\right)+\\ &\left(\frac{F_{1}}{h_{1}}\frac{\partial F_{1}}{\partial u_{1}}+\frac{F_{1}}{h_{1}}\mathbf{e}_{1}\bullet\frac{\partial \mathbf{e}_{3}}{\partial u_{1}}\right)+\left(\frac{F_{1}}{h_{2}}\mathbf{e}_{2}\bullet\frac{\partial \mathbf{e}_{3}}{\partial u_{2}}\right)+\left(\frac{F_{1}}{h_{3}}\mathbf{e}_{3}\bullet\frac{\partial \mathbf{e}_{3}}{\partial u_{3}}\right)+\\ &\left(\frac{F_{2}}{h_{1}}\mathbf{e}_{1}\bullet\frac{\partial \mathbf{e}_{3}}{\partial u_{1}}\right)+\left(\frac{F_{1}}{h_{2}}\mathbf{e}_{2}\bullet\frac{\partial \mathbf{e}_{2}}{\partial u_{2}}\right)+\left(\frac{F_{1}}{h_{3}}\mathbf{e}_{3}\bullet\frac{\partial \mathbf{e}_{3}}{\partial u_{3}}\right)+\\ &\left(\frac{F_{2}}{h_{1}}\mathbf{e}_{1}\bullet\frac{\partial \mathbf{e}_{3}}{\partial u_{1}}\right)+\left(\frac{F_{3}}{h_{2}}\mathbf{e}_{2}\bullet\frac{\partial \mathbf{e}_{3}}{\partial u_{2}}\right)+\left(\frac{F_{1}}{h_{3}}\mathbf{e}_{3}\bullet\frac{\partial \mathbf{e}_{3}}{\partial u_{3}}\right)+\\ &\left(\frac{F_{3}}{h_{3}}\mathbf{e}_{1}\bullet\frac{\partial \mathbf{e}_{3}}{\partial u_{1}}\right)+\left(\frac{F_{3}}{h_{2}}\mathbf{e}_{2}\bullet\frac{\partial \mathbf{e}_{3}}{\partial u_{2}}\right)+\left(\frac{F_{1}}{h_{3}}\mathbf{e}_{3}\bullet\frac{\partial \mathbf{e}_{3}}{\partial u_{3}}\right)+\\ &\left(\frac{F_{3}}{h_{3}}\mathbf{e}_{1}\bullet\frac{\partial \mathbf{e}_{3}}{\partial u_{1}}\right)+\left(\frac{F_{1}}{h_{2}}\mathbf{e}_{2}\bullet\frac{\partial \mathbf{e}_{3}}{\partial u_{2}}\right)+\left(\frac{F_{1}}{h_{3}}\mathbf{e}_{3}\bullet\frac{\partial \mathbf{e}_{3}}{\partial u_{3}}\right)+\\ &\left(\frac{F_{1}}{h_{3}}\mathbf{e}_{1}\bullet\frac{\partial \mathbf{e}_{3}}{\partial u_{1}}\right)+\left(\frac{F_{1}}{h_{2}}\mathbf{e}_{2}\bullet\frac{\partial \mathbf{e}_{3}}{\partial u_{2}}\right)+\left(\frac{F_{1}}{h_{3}}\mathbf{e}_{3}\bullet\frac{\partial \mathbf{e}_{3}}{\partial u_{3}}\right)+\\ &\left(\frac{F_{1}}{h_{3}}\mathbf{e}_{1}\bullet\frac{\partial$$

For Cartesian coordinates, all derivatives of any basis vector are zero, which leaves the familiar Cartesian expression for the divergence. But for most non-Cartesian coordinate systems, at least some of these partial derivatives are not zero. More complicated expressions for the divergence therefore arise.

Example 7.05 (continued)

For cylindrical polar coordinates, we have

$$\begin{split} & \left(\frac{1}{1}\frac{\partial F_{\rho}}{\partial \rho} + \frac{F_{\rho}}{1}\hat{\boldsymbol{\rho}} \bullet \frac{\partial \hat{\boldsymbol{\rho}}}{\partial \rho}\right) + \left(\frac{F_{\rho}}{\rho}\hat{\boldsymbol{\phi}} \bullet \frac{\partial \hat{\boldsymbol{\rho}}}{\partial \phi}\right) + \left(\frac{F_{\rho}}{1}\hat{\mathbf{k}} \bullet \frac{\partial \hat{\boldsymbol{\rho}}}{\partial z}\right) + \\ & \left(\frac{F_{\phi}}{1}\hat{\boldsymbol{\rho}} \bullet \frac{\partial \hat{\boldsymbol{\phi}}}{\partial \rho}\right) + \left(\frac{1}{\rho}\frac{\partial F_{\phi}}{\partial \phi} + \frac{F_{\phi}}{\rho}\hat{\boldsymbol{\phi}} \bullet \frac{\partial \hat{\boldsymbol{\phi}}}{\partial \phi}\right) + \left(\frac{F_{\phi}}{1}\hat{\mathbf{k}} \bullet \frac{\partial \hat{\boldsymbol{\phi}}}{\partial z}\right) + \\ & \left(\frac{F_{z}}{1}\hat{\boldsymbol{\rho}} \bullet \frac{\partial \hat{\mathbf{k}}}{\partial \rho}\right) + \left(\frac{F_{z}}{\rho}\hat{\boldsymbol{\phi}} \bullet \frac{\partial \hat{\mathbf{k}}}{\partial \phi}\right) + \left(\frac{1}{1}\frac{\partial F_{z}}{\partial z} + \frac{F_{z}}{1}\hat{\mathbf{k}} \bullet \frac{\partial \hat{\mathbf{k}}}{\partial z}\right) \end{split}$$

But none of the basis vectors varies with ρ or z and the basis vector $\hat{\mathbf{k}}$ is absolutely constant. Therefore the divergence becomes

$$\left(\frac{1}{1}\frac{\partial F_{\rho}}{\partial \rho} + 0\right) + \left(\frac{F_{\rho}}{\rho}\hat{\boldsymbol{\phi}}\bullet\frac{\partial\hat{\boldsymbol{\rho}}}{\partial \phi}\right) + (0) + \\
(0) + \left(\frac{1}{\rho}\frac{\partial F_{\phi}}{\partial \phi} + \frac{F_{\phi}}{\rho}\hat{\boldsymbol{\phi}}\bullet\frac{\partial\hat{\boldsymbol{\phi}}}{\partial \phi}\right) + (0) + (0) + (0) + \left(\frac{1}{1}\frac{\partial F_{z}}{\partial z} + 0\right) \\
\text{But } \frac{\partial\hat{\boldsymbol{\rho}}}{\partial \phi} = \hat{\boldsymbol{\phi}} \implies \left(\frac{F_{\rho}}{\rho}\hat{\boldsymbol{\phi}}\bullet\frac{\partial\hat{\boldsymbol{\rho}}}{\partial \phi}\right) = \left(\frac{F_{\rho}}{\rho}\hat{\boldsymbol{\phi}}\bullet\hat{\boldsymbol{\phi}}\right) = \frac{F_{\rho}}{\rho} \\
\text{and } \frac{\partial\hat{\boldsymbol{\phi}}}{\partial \phi} = -\hat{\boldsymbol{\rho}} \implies \left(\frac{F_{\phi}}{\rho}\hat{\boldsymbol{\phi}}\bullet\frac{\partial\hat{\boldsymbol{\phi}}}{\partial \phi}\right) = \left(\frac{F_{\phi}}{\rho}\hat{\boldsymbol{\phi}}\bullet(-\hat{\boldsymbol{\rho}})\right) = 0$$

So we recover the cylindrical polar form for the divergence,

$$\operatorname{div} \mathbf{\bar{F}} = \frac{\partial F_{\rho}}{\partial \rho} + \frac{F_{\rho}}{\rho} + \frac{1}{\rho} \frac{\partial F_{\phi}}{\partial \phi} + \frac{\partial F_{z}}{\partial z}$$

In **spherical polar coordinates**, naming the three basis vectors as $\hat{\mathbf{r}}$, $\hat{\boldsymbol{\theta}}$, $\hat{\boldsymbol{\phi}}$, we have:

$$\vec{\mathbf{r}} = r\hat{\mathbf{r}} + 0\hat{\boldsymbol{\theta}} + 0\hat{\boldsymbol{\phi}} = [r \ 0 \ 0]^{\mathrm{T}}$$

The relationship to the Cartesian coordinate system is $x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$, $z = r \cos \theta$.

One of the scale factors is

$$h_{\theta} = \left| \frac{\partial \vec{\mathbf{r}}}{\partial \theta} \right| =$$

In a similar way, we can confirm that $h_r = 1$ and $h_\phi = r \sin \theta$.

$$dV =$$

$$ds^2 =$$

$$\vec{\nabla}V =$$

$$\vec{\nabla} \cdot \vec{F} =$$

Spherical Polar (continued)

$$\vec{\nabla}{\times}\vec{F}\,=\,$$

$$\nabla^2 V =$$

All of the above are undefined on the z-axis ($\sin \theta = 0$), where there is a coordinate singularity. However, by taking the limit as $\sin \theta \to 0$, we may obtain well-defined values for some or all of the above expressions. The origin (r=0) poses a similar problem.

A vector field has the equation, in cylindrical polar coordinates (ρ, ϕ, z) ,

$$\bar{\mathbf{F}} = \frac{k}{\rho^n} \hat{\mathbf{e}}_{\rho} = \frac{k}{\rho^n} \hat{\boldsymbol{\rho}}$$

Find the divergence of $\vec{\mathbf{F}}$ and the value of n for which the divergence vanishes for all $\rho > 0$.

In spherical polar coordinates,

$$\vec{\mathbf{F}}(r,\theta,\phi) = f(\phi)\cot\theta\,\hat{\mathbf{r}} - 2f(\phi)\,\hat{\boldsymbol{\theta}} + g(r,\theta)\,\hat{\boldsymbol{\phi}},$$

where $f(\phi)$ is any differentiable function of ϕ only

and $g(r, \theta)$ is any differentiable function of r and θ only.

Find the divergence of $\vec{\mathbf{F}}$.

Find $\operatorname{curl}\left(\sin\theta\left(\hat{\boldsymbol{\theta}}+\hat{\boldsymbol{\phi}}\right)\right)$, where θ,ϕ are the two angular coordinates in the standard spherical polar coordinate system.

Central Force Law

If a potential function V(x, y, z), (due solely to a point source at the origin) depends only on the distance r from the origin, then the functional form of the potential can be deduced. Using spherical polar coordinates:

$$V(r, \theta, \phi) = f(r)$$

$$\Rightarrow \nabla^2 V = \frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{df}{dr} \right) = \frac{d^2 f}{dr^2} + \frac{2}{r} \frac{df}{dr}$$

But, in any regions not containing any sources of the vector field, the divergence of the vector field $\vec{\mathbf{F}} = \vec{\nabla} V$ (and therefore the Laplacian of the associated potential function V) must be zero. Therefore, for all $r \neq 0$,

Gravity is an example of a central force law, for which the potential function must be of the form $V(r,\theta,\phi) = A - \frac{B}{r}$. The zero point for the potential is often set at infinity:

$$\lim_{r \to \infty} V = \lim_{r \to \infty} \left(A - \frac{B}{r} \right) = A = 0$$

The force per unit mass due to gravity from a point mass M at the origin is

$$\vec{\mathbf{F}} = -\vec{\nabla}V = -\frac{GM}{r^2}\hat{\mathbf{r}}$$

But, in spherical polar coordinates,

$$\vec{\nabla}V = \hat{\mathbf{r}} \frac{\partial V}{\partial r} + \frac{\hat{\boldsymbol{\theta}}}{r} \frac{\partial V}{\partial \theta} + \frac{\hat{\boldsymbol{\phi}}}{r \sin \theta} \frac{\partial V}{\partial \phi} = \hat{\mathbf{r}} \frac{dV}{dr} = \hat{\mathbf{r}} \frac{B}{r^2}$$

$$\Rightarrow -\frac{GM}{r^2} = -\frac{B}{r^2} \Rightarrow B = GM$$

Therefore the gravitational potential function is

$$V(r) = -\frac{GM}{r}$$

The electrostatic potential function is similar, with a different constant of proportionality.

[Space for additional notes]

[End of Chapter 7]