ENGI 4430 Non-Cartesian Coordinates Page 7-01

7. Conversions between Coordinate Systems

In general, the conversion of a vector F=F,i+ ij+ F,k from Cartesian coordinates

(X, y,2) to another orthonormal coordinate system (u,v,w) in R*® (where “orthonormal”

means that the new basis vectors (, v, w are mutually orthogonal and of unit length) is
givenby F=Fi+Fj+Fk=F0+FV+FRW.

However, F, = F0 = (Fi+Fyj+Fk)0 = (i-0)F + () Fy +(k-0)F,.

F, and F, are defined similarly in terms of the Cartesian components Fy, Fy, F; .
In matrix form

F, 0 0 ke |[F
F| = |10 30 k|| F
Fu oW jew Kkew || F,

The matrices on the right hand side of the equation will contain a mixture of expressions
in the new (u,v,w) and old (x,y,z) coordinates. This needs to be converted into a set

of expressions in (u,v,w) only.

Example 7.01

Express the vector F=yi—xj+ zk in cylindrical polar coordinates.

xy plane: coordinates xy plane: basis vectors
¢
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Example 7.01 (continued)

i'¢? = ioR =
ig = ok =
ke — kek =

The coefficient conversion matrix from Cartesian to cylindrical polar is therefore

Letting c=cos¢, s=sing:

polar
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We can also generate the coordinate transformation matrix from Cartesian coordinates
(x,y,2) to spherical polar coordinates (r,8,¢).

[0 is the declination (angle down from the north pole, 0<# <) and

¢ 1s the azimuth (angle around the equator 0<¢<2x).]

[Vertical] Plane containing z-axis and radial vector r :
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& x y plane

[Horizontal] Plane z=rcosé :
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The conversion matrix from Cartesian to spherical polar coordinates is then

ief jei ket sin@cosg sindsing cosé
ied jed ked| = | cosfcosg cosfsing —sind
ied jep Kkeg —sing CoS ¢ 0

Example 7.02

Convert F = yi—xj to spherical polar coordinates.

Let c,=cos@, s,=sind, c,=cosg, s,=sing

T

Il
NN m

Il

Expressions for the gradient, divergence, curl and Laplacian operators in any orthonormal
coordinate system will follow later in this chapter.
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Summary for Coordinate Conversion:

To convert a vector expressed in Cartesian components vx?+vy]+vzk into the

equivalent vector expressed in cylindrical polar coordinates v, p+ v¢¢ + VZR, express

the Cartesian components vy, vy, V; in terms of (p, o, z) using
X=pcos¢, y=psing, z=z; then evaluate

Vo cos¢g sing O _vX
Vg | = —sing cos¢ 0| vy
v, 0 0 1 v, |

Use the inverse matrix to transform back to Cartesian coordinates:
Vy cosg —sing O pr
Vy |=|sing cosg OV p

VZ 0 0 1 _VZJ

To convert a vector expressed in Cartesian components vyi-+vyj+v,K into the

equivalent vector expressed in spherical polar coordinates v, +Vv,6 +v ¢¢ , express the

Cartesian components vy, Vy, V, in terms of (r, 0, ¢) using
X =rsingdcos¢g, y =rsindsing, z =rcosd; thenevaluate

Vp singcos¢ sin@sing cosé || vy
Vg | =|cosfcosg cosfsing —sind ||vy
Vy —sing COS ¢ 0 v,

Use the inverse matrix to transform back to Cartesian coordinates:

Vy singcos¢ cosdcosg —sing || v,
Vy | =|sin@sing cos@sing cosg ||V,
v, cosé —sin@ 0 Vy

Note that, in both cases, the transformation matrix A is orthogonal, so that A™ = AT,
This is not true for most square matrices A, but it is generally true for transformations
between orthonormal coordinate systems.
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Basis Vectors in Other Coordinate Systems

In the Cartesian coordinate system, all three basis vectors are absolute constants:

dy_95_9¢_%
dt dt dt
The derivative of a vector is then straightforward to calculate:
d/,» A - ~df, .~ df ~ df
—(fi+ )+ f.k) =1—2+]—2 + k=2
dt< ' S ) a7t dt

But most non-Cartesian basis vectors are not constant.

Cvlindrical Polar:

¢ . P
Y 4
i s St -

-l
©
@\‘

>

Il

>

O—»  "x
i
dv
Let v=— then p =
dt P

ﬁ:

Therefore if a vector F is described in cylindrical polar coordinates
F=Fp+Fgé+Fk, then

E
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A

In particular, the displacement vector is F(t) = p(t)p + 0¢ + z(t)k, so that the
velocity vector is

“dr _dp. dg. dz.
v ar_dpe dg sz, dzp
at - a? TP’ T

Example 7.03

Find the velocity and acceleration in cylindrical polar coordinates for a particle travelling
along the helix x=3cos2t, y=3sin2t, z=t.

Cylindrical polar coordinates: x=pcos¢, y=psing, z=z

= p?=x+y?, tan¢=l
X
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Alternative derivation of cylindrical polar basis vectors

On page 7.02 we derived the coordinate conversion matrix A to convert a vector
expressed in Cartesian components vxf+vyj +vZR into the equivalent vector expressed

in cylindrical polar coordinates vp,b + v¢¢ +V,K

Vo Vy cosg sing O _vx
Vy = Alvy | =|-sing cos¢g O||vy
VZ VZ O O 1 _VZ
and its inverse A*
Vy Vo cosg —sing 0] Vp
vy | = AT Vy | =|sing cosg 0|V,
v, v, 0 0 1] v,
For any 3x3matrix M,
(1] 0
M| O | = the first column of M; M| 1 | = the second column of M; and
| 0| 0
0]
M| O | = the third column of M
1

Note that p = 1+ 0¢ + 0k, so that the Cartesian form of 5 is
cosg —sing 0|1 CoS ¢
p=|sing cosg 0[/0]|=]sing |=cosgi+sing]

0 0 1|0 0
Similarly
cosg —sing 0]|0 —sing
@ =|sing cosg O|[1]|=]| cosg¢ |=—singi+cosgj
0 0 1|10 0

Therefore the columns of A (and therefore the rows of A) are just the Cartesian
components of the three cylindrical polar basis vectors.
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Spherical Polar Coordinates

The coordinate conversion matrix also provides a quick route to finding the Cartesian
components of the three basis vectors of the spherical polar coordinate system.

1
P =1f+06+0¢ =|0
0 o
1 Iy 1 sindcos¢g cos@dcosg —sing ||l sin @ cos ¢
Fr=(0] = ry =A1|0|=]sin@sing cosfdsing cos¢ ||0|=|sindsing
0 0 cosé —-sind 0 0 cosé

= f =sinfcosgi +sindsingj + cosok

0 Oy 0 sindcos¢g cos@dcosg —sing||0 Cosé cos ¢
o=\1| = 2y =A71|1|=|sin@sing cos@sing cosg ||1|=|cosdsing
0 0, 0 cosé —-siné 0 0 —-siné

= 0 =cosfcosgi + cosdsingj — sindk

0 Py 0 sindcos¢g cos@dcosg —sing (|0 —sing
¢3: 0 = |¢y =A7'|0|=]sin@sing cos@sing cos¢g ||0|=]| cos¢
1 4, 1 cosé —sin@ 0 1 0

= ¢ =-singi + cosgj

Again, the Cartesian components of the basis vectors are just the columns of A (which
are also the rows of A). This is true for any orthonormal coordinate system.

These expressions for #, 8, ¢ can also be found geometrically
[available on the course web site].
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Derivatives of the Spherical Polar Basis Vectors

P =sindcosgi + sin@sing j + cosd k
dr

- _— =
dt

0 = cosfcosgi + cosdsing j — sin@k
0
dt

é = —singi + cosgj
=

dg _

dt

In particular, the displacement vector is ¥ = rf, so that the velocity vector is

g dr_drp  dr_dr. d—gé+sin¢9d—¢¢3
dt dt dt dt dt dt
Loy, 99, rsian—¢¢3

dt dt dt
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It can be shown that the acceleration vector in the spherical polar coordinate system is
— 2 2 2
a-dV _ d—zr—r (d_&j +(d—¢j sin®@ | ¢
dt dt dt dt
2
+ 1i(rzd—ej -~ L(%J sin20 |6
r dt dt 2\ dt
+ 1 i(rzGl_(Iﬁsinzej é
rsing dt dt
2 d’y. d%z.

. . . d°x»
Compare this to the Cartesian equivalent a = presigireal Il k!

Example 7.04

Find the velocity vector v for a particle whose displacement vector ¥, in spherical polar
coordinates, is givenby r=4, 6=t, ¢=2t, (0<t<x).

(=4, o=t, g=2 = I _o, 994 9,
dt dt dt

vV = gf + rd—eé + rsin@d—¢¢3
dt d dt
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Summary:

Cylindrical Polar:

=

d . X

a? " a?
d - do .
a? = " w”
4% -0
dt

F=pp+zk = V=pp+ppd+1k

Spherical Polar:
ar =%é+sin9d—¢¢3
dt dt dt
49 _ _49; +c050%¢3
dt dt dt
d¢ _ —(sin@f+cos€é)%
dt dt

= V =FF+rf0+rsindgg

=
I

-

-~
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Gradient Operator in Other Coordinate Systems

For any orthogonal curvilinear coordinate system (uj, u,, u;) in R®,

a tangent vector along the u; curvilinear axis is T, :ﬁ
Ui
. - A _ 1 or
The unit tangent vectors along the curvilinear axes are &, = Ti = PP
i OUj
or
where the scale factors h; = 0|
u.
|

The displacement vector ¥ can then be written as r = u,é, + u,é, +u,é,, where the unit
vectors &; form an orthonormal basis for R®:

8.8,

[J; i is the “Kronecker delta”.]

The differential displacement vector dr is (by the Chain Rule)

dr = ﬂdu1 + ﬂdu2 + o

ou, ou, ou,

which leads to a more general expression for the velocity vector (compared to those of
the preceding page):

du, = hdué + h,du,é, + h,du,é,

_odar du, ,
V=—=h—é +h
dt hldt1 ?

du, . du, ,
—28, + h,—2é
dt 2 , dt ®

The differential arc length ds is
ds? = dredr = (hdy,)* + (h,du,)” + (h,du,)’

The element of volume dV is

dV = h1h2h3 duldUZdU3 = % duldUZdU3
1,42:43
ox oy oz
ou; ou;  0Oup
= ax ay az duldUZdUS
ou, du, Ou,
ox oy oz
Ouz Ouz Ous
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Gradient operator V = & 0 + & 0 n & 0
hou, h,ou, hou,
Gradient vV ﬂﬂ e_Zﬂ + eiﬂ
hyou, h,ou, h ou
_ o(h,h,f) © f o(h h,f
h h, h, ou, au, ou,
0
e, — f
ne he, he, W b
CUI’l vxr: = 1 i i i - 1 h2 éz i h2 f2
hhh, | ou ou, ou, h h, h, ou,
f,f hf, hf A
hl 1 2 2 3 '3 h3e3 6_u3 h3 f3
Laplacian V& = 1 O (hhov) & (hhov +i hh, oV
hhh {ou\ h ou ) ou,\ h, ou, ) ou,\ h, ou,
Cartesian: hy=hy =h, =1
Cylindrical polar: h,=h, =1, h¢ =p
Spherical polar: h =1, hy=r, h¢ =rsinéd

The familiar expressions then follow for the Cartesian coordinate system.
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In cylindrical polar coordinates, naming the three basis vectors as 5, @, k, we have:

F:p,b+0¢3+ZR:[pO Z]T
The relationship to the Cartesian coordinate system is

Xx=pcosg, y=psing, 2=z = p?=x2+y?, tang="2
X
One scale factor is
h, = or|_
op

In a similar way, we can confirm that h¢ =p and h, =1.
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In cylindrical polar coordinates,

dv =

ds? =

<
°
T
Il

V& =

All of the above are undefined on the z-axis (o =0), where there is a coordinate

singularity. However, by taking the limit as o — 0, we may obtain well-defined values
for some or all of the above expressions.
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Example 7.05

Given that the gradient operator in a general curvilinear coordinate system is
j , why isn’t the divergence of

F=Fé + Fé& + F,é, equal, ingeneral,to | ——% + ——=
1¥1 2°%2 363 €( g h, ou, h, ou, h3 ou,

- [1a|:1+1a|:2+1%j7

The quick answer is that the differential operators operate not just on the components
F., F,, F,, but also on the basis vectors é,é,,&,. In most orthonormal coordinate

systems, these basis vectors are not constant.  The divergence therefore contains
additional terms.

e, O e, 0 g, 0
-+ =+ = — Fe, + Fe, + Fe.)=
[hl h,éu, h,ou, *(Fe. + R, + Fer)

el.e1@+5e.%j+[e2.elﬁ R .aelJ+[e3oe1£ F %}

) +-te,0—1 +-1le, e
h ou h ou, h, du, h, au, h, ou, h, ou,

ﬁ£+ieloaez N e20e26F2+ie2.ae2 N e3.e28F2+ie3.6& N
h ou h ou, h, ou, h, au, h, ou, h ou,

eloe3@+5el.ae3 N e20e36F3+5e2.8e3 N esoe3%+5e3.% _
h ou h ou, h, ou, h, au, h, ou, h, ou,

10F F oe, F oe, F oe,
——+ e e —|+| e, 0 — 4| —e, 0 — |+
hou h ou, h, ou, h, ou,
Foo 08| (LR R 0e) (F e,
h, ou, h, ou, h, au, h, ou,
Fig e8|y Fe o0&, (1K K, 08

h, ou, h, au, h, ou, h, ou,

For Cartesian coordinates, all derivatives of any basis vector are zero, which leaves the
familiar Cartesian expression for the divergence. But for most non-Cartesian coordinate
systems, at least some of these partial derivatives are not zero. More complicated
expressions for the divergence therefore arise.
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Example 7.05 (continued)

For cylindrical polar coordinates, we have

%ai_kip\.a_p]_'_(i&.a_pj_k[l: R.a_pj+

lop 1 op yo, 0@

15}
F b oF. F, . 0d F. . 04
¢ﬁoa¢ + l_¢+_¢¢.% + _¢ .% +
op pogp p  Of 1 z
F

1
F,. ok) (F . ok) (16F, F ., ok
Tpo— + —¢0 +| = + ke —

p% 10z 1 z

But none of the basis vectors varies with p or z and the basis vector k is absolutely

constant. Therefore the divergence becomes

pop p 1oz

6ﬁ_ Fp‘ ab]_(FpA Aj_Fp
But — = —@ge— | =| —¢@e = =
“a¢¢j£p¢a¢ FAakd I

o _ . F, . 04 _[Fw Aj_
d L& = — L hde—L | =| LPe(— =0
Y [p"’ 6¢J 500 ()

So we recover the cylindrical polar form for the divergence,

oF, F, 10F, o,

divF = —2+-2+

op p pOo¢p oz
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In spherical polar coordinates, naming the three basis vectors as t, 8, #, we have:
F=rf+00+04=[r00]

The relationship to the Cartesian coordinate system is

X =rsin@cos¢g, y =rsin@dsing, z =rcosé.

One of the scale factors is
or
00

9 =

In a similar way, we can confirm that h, =1 and h¢ =rsing.

dv =
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Spherical Polar (continued)

<
X
T
Il

VAV =

All of the above are undefined on the z-axis (sin@=0), where there is a coordinate
singularity. However, by taking the limit as sind — 0, we may obtain well-defined
values for some or all of the above expressions. The origin (r=0) poses a similar
problem.
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Example 7.06

A vector field has the equation, in cylindrical polar coordinates (p, o, z),
_ k . kK .
P" P

Find the divergence of F and the value of n for which the divergence vanishes for all
p>0.
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Example 7.07

In spherical polar coordinates,

F(r,0,¢) = f(p)cotot — 2 (4)8 + g(r,0)é ,
where f(¢) is any differentiable function of ¢ only
and g(r, 6) is any differentiable function of r and & only.

Find the divergence of F.
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Example 7.08

Find curl (sine(é + ¢)) where 6, ¢ are the two angular coordinates in the standard

spherical polar coordinate system.
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Central Force Law

If a potential function V (X, Y, z), (due solely to a point source at the origin) depends only

on the distance r from the origin, then the functional form of the potential can be
deduced. Using spherical polar coordinates:

1d ( dej d*f  2df
= rr-r—| = — 4+ ——
dr dr®>  rdr
But, in any regions not containing any sources of the vector field, the divergence of the
vector field F = VV (and therefore the Laplacian of the associated potential function V)
must be zero. Therefore, forall r =0,
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Gravity is an example of a central force law, for which the potential function must be of
the form V (r,0,¢) = A- E. The zero point for the potential is often set at infinity:
r

IimV = lim (A—Ej =A=0

r—oo r—oo r

The force per unit mass due to gravity from a point mass M at the origin is

ﬁ:—W:-G'Z/'f
r

But, in spherical polar coordinates,

N Qv 6 N . adv B
=r—4+ —-——++ =T —

IV = ¢ PN _ ¢S ¢
or r 06 rsin@ o¢ dr r
—Grll/l :—r—E; = B = GM

Therefore the gravitational potential function is

_GM
r

V(r) =

The electrostatic potential function is similar, with a different constant of proportionality.
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[Space for additional notes]

[End of Chapter 7]
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