8. <u>Line Integrals</u>

Two applications of line integrals are treated here: the evaluation of work done on a particle as it travels along a curve in the presence of a [vector field] force; and the evaluation of the location of the centre of mass of a wire.

Work done:

The work done by a force $\mathbf{\bar{F}}$ in moving an elementary distance $\Delta \mathbf{\bar{r}}$ along a curve *C* is approximately the product of the component of the force in the direction of $\Delta \mathbf{\bar{r}}$ and the distance $|\Delta \mathbf{\bar{r}}|$ travelled:

Integrating along the curve *C* yields the total work done by the force $\vec{\mathbf{F}}$ in moving along the curve *C*:

$$W = \int_C \vec{\mathbf{F}} \cdot \mathbf{d} \vec{\mathbf{r}}$$

Find the work done by $\mathbf{\bar{F}} = \begin{bmatrix} -y & x & z \end{bmatrix}^T$ in moving once around the closed curve *C* (defined in parametric form by $x = \cos t$, $y = \sin t$, z = 0, $0 \le t < 2\pi$).

Example 8.01 (continued)

Example 8.02 Find the work done by $\vec{\mathbf{F}} = \begin{bmatrix} x & y & z \end{bmatrix}^T$ in moving around the curve *C* (defined in parametric form by $x = \cos t$, $y = \sin t$, z = 0, $0 \le t < 2\pi$). If the initial and terminal points of a curve C are identical and the curve meets itself nowhere else, then the curve is said to be a **simple closed curve**.

Notation:

When *C* is a simple closed curve, write $\int_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}}$ as $\oint_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}}$.

 $\vec{\mathbf{F}}$ is a conservative vector field if and only if $\oint_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}} = 0$ for all simple closed

curves C in the domain.

Be careful of where the endpoints are and of the order in which they appear (the orientation of the curve). The identity $\int_{t_0}^{t_1} \vec{\mathbf{F}} \cdot \frac{d\vec{\mathbf{r}}}{dt} dt = -\int_{t_1}^{t_0} \vec{\mathbf{F}} \cdot \frac{d\vec{\mathbf{r}}}{dt} dt$ leads to the result

$$\oint_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}} = - \oint_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}} \quad \forall \text{ simple closed curves } C$$

Another Application of Line Integrals: The Mass of a Wire

Let C be a segment $(t_0 \le t \le t_1)$ of wire of line density $\rho(x, y, z)$. Then

First moments about the coordinate planes:

The location $\langle \vec{\mathbf{r}} \rangle$ of the centre of mass of the wire is $\langle \vec{\mathbf{r}} \rangle = \frac{\vec{\mathbf{M}}}{m}$, where the moment $\vec{\mathbf{M}} = \int_{t_0}^{t_1} \rho \vec{\mathbf{r}} \frac{ds}{dt} dt$, $m = \int_{t_0}^{t_1} \rho \frac{ds}{dt} dt$ and $\frac{ds}{dt} = \left| \frac{d\vec{\mathbf{r}}}{dt} \right| = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2}$.

Find the mass and centre of mass of a wire C (described in parametric form by $x = \cos t$, $y = \sin t$, z = t, $-\pi \le t \le \pi$) of line density $\rho = z^2$.

Example 8.03 (continued)

Green's Theorem

Some definitions:

A curve *C* on \mathbb{R}^2 (defined in parametric form by $\vec{\mathbf{r}}(t) = x(t)\hat{\mathbf{i}} + y(t)\hat{\mathbf{j}}$, $a \le t \le b$) is **closed** iff (x(a), y(a)) = (x(b), y(b)).

The curve is **simple** iff $\mathbf{\bar{r}}(t_1) \neq \mathbf{\bar{r}}(t_2)$ for all t_1, t_2 such that $a < t_1 < t_2 < b$; (that is, the curve neither touches nor intersects itself, except possibly at the end points).

Example 8.04

Two simple curves:

Orientation of closed curves:

A closed curve C has a positive orientation iff a point $\mathbf{\tilde{r}}(t)$ moves around C in an anticlockwise sense as the value of the parameter t increases.

Let *D* be the finite region of \mathbb{R}^2 bounded by *C*. When a particle moves along a curve with positive orientation, *D* is always to the left of the particle.

For a simple closed curve *C* enclosing a finite region *D* of \mathbb{R}^2 and for any vector function $\vec{\mathbf{F}} = \begin{bmatrix} f_1 & f_2 \end{bmatrix}^T$ that is differentiable everywhere on *C* and everywhere in *D*, **Green's theorem** is valid:

$$\oint_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}} = \iint_D \left(\frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y} \right) dA$$

The region *D* is entirely in the *xy*-plane, so that the unit normal vector everywhere on *D* is $\hat{\mathbf{k}}$. Let the differential vector $\mathbf{d}\mathbf{\vec{A}} = dA\hat{\mathbf{k}}$, then Green's theorem can also be written as

$$\oint_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}} = \iint_D (\vec{\nabla} \times \vec{\mathbf{F}}) \cdot \hat{\mathbf{k}} \, dA = \iint_D (\operatorname{curl} \vec{\mathbf{F}}) \cdot d\vec{\mathbf{A}}$$

Green's theorem is valid if there are no singularities in *D*. A [non-examinable] proof is provided at the end of this chapter.

Example 8.07

Example 8.07 (continued)

$$\vec{\mathbf{F}} = \begin{bmatrix} x+y\\ x-y \end{bmatrix}$$

Example 8.07 (continued)

OR use Green's theorem!

Find the work done by the force $\vec{\mathbf{F}} = xy\hat{\mathbf{i}} + y^2\hat{\mathbf{j}}$ in one circuit of the unit square.

Path Independence

Gradient Vector Fields:

If
$$\vec{\mathbf{F}} = \vec{\nabla}V$$
, then $\vec{\mathbf{F}} = \left[\frac{\partial V}{\partial x} \quad \frac{\partial V}{\partial y}\right]^{T} \Rightarrow$

Path Independence

If $\vec{\mathbf{F}} = \vec{\nabla}V$ (or $\vec{\mathbf{F}} = -\vec{\nabla}V$), then *V* is a **potential function** for $\vec{\mathbf{F}}$. Let the path *C* travel from point P_0 to point P_1 :

Domain

A region Ω of \mathbb{R}^2 is a **domain** if and only if

- 1) For all points P_0 in Ω , there exists a circle, centre P_0 , all of whose interior points are inside Ω ; and
- 2) For all points P_0 and P_1 in Ω , there exists a piecewise smooth curve *C*, entirely in Ω , from P_0 to P_1 .

If a domain is not specified, then, by default, it is assumed to be all of \mathbb{R}^2 .

When a vector field \vec{F} is defined on a simply connected domain Ω , these statements are all equivalent (that is, **all** of them are true or all of them are false):

- $\vec{\mathbf{F}} = \vec{\nabla} V$ for some scalar field V that is differentiable everywhere in Ω ;
- $\vec{\mathbf{F}}$ is conservative;
- $\int_{C} \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}}$ is path-independent (has the same value no matter which path within Ω

is chosen between the two endpoints, for any two endpoints in Ω);

- $\int_{C} \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}} = V_{\text{end}} V_{\text{start}} \text{ (for any two endpoints in } \Omega \text{);}$
- $\oint_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}} = 0 \text{ for all closed curves } C \text{ lying entirely in } \Omega;$
- $\frac{\partial f_2}{\partial x} = \frac{\partial f_1}{\partial y}$ everywhere in Ω ; and
- $\vec{\nabla} \times \vec{F} = \vec{0}$ everywhere in Ω (so that the vector field \vec{F} is irrotational).

There must be no singularities anywhere in the domain Ω in order for the above set of equivalencies to be valid.

Example 8.10

Evaluate $\int_{C} ((2x+y) dx + (x+3y^2) dy)$ where C is any piecewise-smooth curve from (0,0) to (1,2).

 $y = 2x \implies x = \frac{1}{2}y$.

Example 8.10 by direct evaluation of the line integral

Let us pursue instead a particular path from (0, 0) to (1, 2). The straight line path C_1 is a segment of the line

$$\Rightarrow I = \int_{C_1} \left((2x+y) dx + (x+3y^2) dy \right) =$$

An alternative evaluation of $I = \int_{C_1} \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}}$ is to use x as the parameter in both integrals (that is, to express y in terms of x throughout). Then

$$\Rightarrow I = \int_{C_1} \left(\left(2x + y \right) dx + \left(x + 3y^2 \right) dy \right) =$$

An alternative path C_2 involves going round the other two sides of the triangle, first from (0, 0) horizontally to (1, 0) then from there vertically to (1, 2). On the first leg $y \equiv 0 \implies dy \equiv 0$, so that the second part of the integral vanishes. On the second leg $x \equiv 1 \implies dx \equiv 0$, so that the first part of the integral vanishes.

Therefore

$$I = \int_{C_2} \left(\left(2x + y \right) dx + \left(x + 3y^2 \right) dy \right) =$$

Example 8.10 by direct evaluation of the line integral

Yet another possibility is C_3 an arc of the parabola $y = 2x^2$.

$$\Rightarrow I = \int_{C_3} \left((2x+y) dx + (x+3y^2) dy \right) =$$

Note that the above suggests that $I = \int_{(0,0)}^{(1,2)} \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}}$ might be path-independent, because evaluations along three different paths have all produced the same answer. But this is *not* a proof of path independence. For a proof, one must establish that $\vec{\mathbf{F}}$ is conservative, either by finding the potential function, or by showing that $\operatorname{curl} \vec{\mathbf{F}} = \vec{\mathbf{0}}$.

y = d

Outline of a Proof of Green's Theorem [not examinable]

Let $\vec{\mathbf{F}} = P(x, y)\hat{\mathbf{i}} + Q(x, y)\hat{\mathbf{j}}$.

Consider a convex region D as shown. Left and right boundaries can be identified.

Then

$$\iint_{D} \frac{\partial Q}{\partial x} dA = \int_{c}^{d} \int_{p(y)}^{q(y)} \frac{\partial Q}{\partial x} dx dy$$

$$x = p(y)$$

$$D$$

$$\int_{c}^{d} \left[Q(x, y) \right]_{x=p(y)}^{x=q(y)} dy$$

$$y = c$$

$$\int_{c}^{d} \left[Q(q(y), y) - Q(p(y), y) \right] dy = \int_{c}^{d} Q(q(y), y) dy + \int_{d}^{c} Q(p(y), y) dy$$

But the path along x = q(y) from y = c to y = d followed by the path along x = p(y) from y = d back to y = c constitutes one complete circuit around the closed path *C*.

$$\Rightarrow \iint_{D} \frac{\partial Q}{\partial x} dA = \bigoplus_{C} Q \, dy$$

Lower and upper boundaries for the region can also be identified.

But the path along y = g(x) from x = a to x = b followed by the path along y = h(x) from x = b back to x = a constitutes one complete circuit around the closed path *C*.

$$\Rightarrow \iint_{D} \frac{\partial P}{\partial y} dA = - \oint_{C} P \, dx \quad \Rightarrow \quad \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA = \oint_{C} \left(P \, dx + Q \, dy \right)$$

Green's Theorem (continued)

But
$$\vec{\mathbf{F}} \cdot d\vec{\mathbf{r}} = \begin{bmatrix} P \\ Q \end{bmatrix} \cdot \begin{bmatrix} dx \\ dy \end{bmatrix} = P \, dx + Q \, dy$$

Therefore

$$\iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA = \oint_{C} \vec{\mathbf{F}} \cdot \mathbf{d}\vec{\mathbf{r}}$$

This proof can be extended to non-convex regions. Simply divide them up into convex sub-regions and apply Green's theorem to each sub-region.

The line integrals along common interior boundaries cancel out because they are travelled in opposite directions along the same line. The boundary of each convex sub-region D_i is a simple closed curve C_i , for which Green's theorem is valid:

$$\oint_{C_i} \vec{\mathbf{F}} \cdot \mathbf{d} \vec{\mathbf{r}} = \iint_{D_i} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA$$
$$\Rightarrow \sum_{\forall i} \oint_{C_i} \vec{\mathbf{F}} \cdot \mathbf{d} \vec{\mathbf{r}} = \sum_{\forall i} \iint_{D_i} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA$$

Therefore Green's theorem is also valid for any simply-connected region.

[Space for Additional Notes]