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9.    Surface Integrals - Projection Method 

 

Surfaces in 
3
  

 

In 3  a surface can be represented by a vector parametric equation  

     ˆ ˆ ˆ, , ,x u v y u v z u v  r i j k  

where  u, v  are parameters. 

 

 

Example 9.01  

 

The unit sphere, centre O, can be represented by  

 

sin cos

, sin sin

cos

 

   



 
 


 
  

r     
0 and 0 2      

 
 

        

 

 

If every vertical line (parallel to the z-axis) in 3  meets the surface no more than once, 

then the surface can also be parameterized as  

 

 

 , or as ,

,

x

x y y z f x y

f x y

 
 

  
 
 

r  

 

 

Example 9.02  

 

  2 2 2 24 , , | 4z x y x y x y         is a  

 

 

A simple surface does not cross itself.    

If the following condition is true:   

{        1 1 2 2 1 1 2 2, , , ,u v u v u v u v  r r  for all pairs of points in the domain} 

then the surface is simple.    

 

The converse of this statement is not true.    

This condition is sufficient, but it is not necessary for a surface to be simple. 

The condition may fail on a simple surface at coordinate singularities.   For example, one 

of the angular parameters of the polar coordinate systems is undefined everywhere on the 

z-axis, so that spherical polar (2, 0, 0) and (2, 0, ) both represent the same Cartesian 

point (0, 0, 2).   Yet a sphere remains simple at its z-intercepts. 
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Tangent and Normal Vectors to Surfaces  
 

A surface S is represented by  ,u vr .   Examine the neighbourhood of a point 0P  at 

 0 0,u vr .   Hold parameter v constant at 0v  (its value at 0P ) and allow the other 

parameter u to vary.   This generates a slice through the two-dimensional surface, namely 

a one-dimensional curve uC  containing 0P  and represented by a vector parametric 

equation  o,u vr r  with only one freely-varying parameter (u). 

 

 

 

 

 

 

 

 

 

 

 

 

If, instead, u is held constant at 0u  and v is allowed to vary, we obtain a different slice 

containing 0P , the curve  o: ,vC u vr . 

 

On each curve a unique tangent vector can be defined. 

 

 
 

At all points along uC , a tangent vector is defined by   o,u u v
u





T r . 

[Note that this is not necessarily a unit tangent vector.] 

At 0P  the tangent vector becomes      o o
o

o

, ,
P

P

u u v u v
u u

 
 

 
T r r  . 

Similarly, along the other curve vC , the tangent vector at Po is   o o
o

,
Pv u v

v





T r . 

If the two tangent vectors are not parallel and neither of these tangent vectors is the zero 

vector, then they define the orientation of tangent plane to the surface at 0P . 
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A normal vector to the tangent plane is   

 

  

 

      
 

 

 

 

 

 
 

T

o o,

, , ,

, , ,
u v

y z z x x y

u v u v u v

   
  

   
, 

 

 

 

 

 

,
where is the det .

,

x x

u vx y

y yu v

u v

  
  
 
   
   

Jacobian  

Cartesian parameters  

With  , , ,u x v y z f x y   , the components of the normal vector  

1 2 3
ˆ ˆ ˆN N N  N i j k    are: 

 

 

 1

,

,

y z
N

x y


 


  

 

 

 

 2

,

,

z x
N

x y


 


     

 

 3

,

,

x y
N

x y


 


 

 

 

 a normal vector to the surface  ,z f x y  at  0 0 0, ,x y z   is  

 

 

T

o o,

1

x y

f f

x y

  
    

  
N  
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If the normal vector N  is continuous and non-zero over all of the surface S, then the 

surface is said to be smooth. 

 

 

Example 9.03  

 

A sphere is smooth.  

 

A cube is  

 

A cone is  

 

 

Surface Integrals (Projection Method)  
 

This method is suitable mostly for surfaces which can be expressed easily in the 

Cartesian form  z = f (x, y).  
 

The plane region  D  is the projection (or shadow) of the surface  :S f cr  onto a 

plane (usually the xy-plane) in a 1:1 manner. 

 

 
The plane containing D has a constant unit normal n̂ . 

N  is any non-zero normal vector to the surface S. 
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Surface Integrals (Projection Method)    (continued) 

 

 

 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For  ,z f x y  and  D = a region of the xy-plane,  

 

T

ˆˆ1 and
z z

x y

  
    

  
N n k  

ˆ 1 and N n  

 

   
2 2

1

S
D

z z
g dS g dA

x y

    
     

    
 r r  

 

which is the projection method of integration of  , ,g x y z  over the surface  ,z f x y . 

 

Advantage:   

 

 

 

Disadvantage:  
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Example 9.04  

 

Evaluate 

S

z dS , where the surface S is the section of the cone 2 2 2z x y   in the first 

octant, between z = 2 and z = 4. 
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Example 9.04   (continued) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Flux through a Surface (Projection Method) 
 

Set    Ng Fr  (the normal component of vector field F , that is, F  resolved in the 

direction of the normal N  to the surface S), then proceed as before:  

 

 

    

 

 

 

 

 

 

where   

T

1
z z

x y

  
   

  
N  
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Example 9.05  

 

Find the flux due to the vector field rF r  through the sphere  S , radius 2, centre the 

origin.  
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Example 9.05   (continued) 
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Surface Integrals - Surface Method 
 

When a surface  S  is defined in a vector parametric form  ,u vr r , one can lay a 

coordinate grid (u, v) down on the surface S. 

A normal vector everywhere on S is 
u v

 


 

r r
N   . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   
S S

g dS g du dv
u v

 
 

  
r r

r r  

 

Advantage:  

    only one integral to evaluate 

 

Disadvantage:  

    it is often difficult to find optimal parameters  (u, v). 

 

 

 

The total flux of a vector field F  through a surface S is 

 

ˆ

S S S

dS du dv
u v

 
    

   
r r

F dS F N F  

(which involves the scalar triple product 
u v

 


 

r r
F ). 
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Example 9.06: (same as Example 9.04, but using the surface method). 

 

Evaluate 

S

z dS , where the surface S is the section of the cone 2 2 2z x y   in the first 

octant, between z = 2 and z = 4. 

 

 

 

Choose a convenient parametric net:  
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Just as we used line integrals to find the mass and centre of mass of [one dimensional] 

wires, so we can use surface integrals to find the mass and centre of mass of [two 

dimensional] sheets. 

 

 

Example 9.07  

 

Find the centre of mass of the part of the unit sphere (of constant surface density) that lies 

in the first octant. 
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Example 9.07    (continued) 
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Example 9.08  (same as Example 9.05, but using the surface method) 

 

Find the flux due to the vector field rF r  through the sphere  S , radius 2, centre the 

origin.  
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Example 9.09  

 

Find the flux of the field  
T

x y z F  across that part of  x + 2y + z = 8  that lies in 

the first octant. 
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Example 9.09   (continued) 
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Example 9.10    

 

Find the total flux   of the vector field ˆzF k  through the simple closed surface S 
2 2 2

2 2 2
1

x y z

a b c
    

 

 

Use the parametric grid  ,  , such that the displacement vector to any point on the 

ellipsoid is 

  

sin cos

, sin sin

cos

a

b

c

 

   



 
 
 
  

r  

This grid is a generalisation of the spherical polar coordinate grid and covers the entire 

surface of the ellipsoid for 0 , 0 2       . 

 

 

One can verify that sin cos , sin sin , cosx a y b z c        does lie on the ellipsoid  
2 2 2

2 2 2
1

x y z

a b c
     for all values of  ,  : 

 
2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2

sin cos sin sin cosx y z a b c

a b c a b c

    
      

 2 2 2 2 2 2 2 2 2sin cos sin sin cos sin cos sin cos               

2 2sin cos 1 and         

 

 

The tangent vectors along the coordinate curves   = constant and   = constant are 
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Example 9.10   (continued) 
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For vector fields  F r ,  

Line integral:  
C

F dr  

Surface integral: 

    
S S S S

dS du dv du dv
u v

 
    

    
r r

F r dS F r N F N F  

On a closed surface, take the sign such that N  points outward.  

 

Some Common Parametric Nets  
 

1)  The circular plate    
2 2 2

o ox x y y a     in the plane oz z .  

 Let the parameters be ,r   where  0 , 0 2r a        

 o o ocos , sin ,x x r y y r z z        

 

ˆ cos sin

ˆ ˆsin cos

ˆ 0 0

r

r r
r

 

 



  

       
  

i
r r

N j k

k

 

 

2)  The circular cylinder    
2 2 2

o ox x y y a     with 0 1z z z  .  

 Let the parameters be ,z   where 0 1 , 0 2z z z        

 cos , sin ,x a y a z z      

 

ˆ 0 sin

ˆ ˆ ˆ0 cos cos sin

ˆ 1 0

a

a a a
z



  



  

         
  

i
r r

N j i j

k

 

Outward normal:  ˆ ˆcos sina a  N i j  
 

3)  The frustum of the circular cone    
2 2

o o ow w a u u v v       where 

1 2 o 1andw w w w w   .  Let the parameters here be ,r   where 

1 o 2 o , 0 2
w w w w

r
a a

 
 

     

o o ocos , sin ,x u u r y v v r z w w ar           

ˆ cos sin

ˆ sin cos

ˆ 0

r

r
r

a

 

 



  

     
  

i
r r

N j

k

 

   ˆ ˆ ˆcos sina r a r r       
 

i j k  

Outward normal:  ˆ ˆ ˆcos sinar ar r   N i j k  
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4) The portion of the elliptic paraboloid 

   
2 22 2

o o o o 1 2withz z a x x b y y z z z z         

  Let the parameters here be ,r   where  

1 o 2 o

2 2 2 2 2 2 2 2
, 0 2

cos sin cos sin

z z z z
r

a b a b
 

   

 
   

 
 

  2 2 2 2 2

o o ocos , sin , cos sinx x r y y r z z r a b            

   

   

2 2 2 2 2 2 2

2 2 2 2

ˆ cos sin

ˆ sin cos

ˆ 2 cos sin 2 sin cos

ˆ ˆ ˆ2 cos 2 sin

r

r
r

r a b r b a

a r b r r

 

 


   

 


  

     
  

 

      
 

i
r r

N j

k

i j k

 

 Outward normal:     2 2 2 2ˆ ˆ ˆ2 cos 2 sina r b r r   N i j k  

 

5)  The surface of the sphere        2222
azzyyxx   .  

 Let the parameters here be ,   where  20,0   

 o o osin cos , sin sin , cosx x a y y a z z a            

     2

ˆ cos cos sin sin

ˆ cos sin sin cos

ˆ sin 0

ˆ ˆ ˆsin sin cos sin sin cos

a a

a a

a

a

   

   
 



     


  

     
  



    
 

i
r r

N j

k

i j k

 

 Outward normal:       2 ˆ ˆ ˆsin sin cos sin sin cosa         
 

N i j k  

OR     2ˆ ˆ ˆsin sin sina a a a  
 

 
   
 

r r
N r r    

 

6)  The part of the plane        0  zzCyyBxxA  in the first octant with 

, , 0A B C    and   o o o 0Ax By Cz   . 

            Let the parameters be  x, y  where  

0 ; 0
Ax By Cz By Ax By Cz

x y
A B

    
     

           

ˆ 1 0

ˆ ˆ ˆ ˆ0 1

ˆ

A B

x y C C
A B

C C

    
               

 

i
r r

N j i j k

k

 

 

[End of Chapter 9]  
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