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11. Partial Differential Equations 

    

Partial differential equations (PDEs) are equations involving functions of more than one 

variable and their partial derivatives with respect to those variables. 

 

Most (but not all) physical models in engineering that result in partial differential 

equations are of at most second order and are often linear.   (Some problems such as 

elastic stresses and bending moments of a beam can be of fourth order).   In this course 

we shall have time to look at only a very small subset of second order linear partial 

differential equations. 

 

 

Major Classifications of Common PDEs    
 

A general second order linear partial differential equation in two Cartesian variables can 

be written as 

     
2 2 2

2 2
, , , , , , ,

u u u u u
A x y B x y C x y f x y u

x x y y x y

     
    

      
 

 

Three main types arise, based on the value of  D  =  B
 2

 – 4AC (a discriminant): 

Hyperbolic, wherever (x, y) is such that  D > 0; 

Parabolic, wherever (x, y) is such that  D = 0; 

Elliptic, wherever (x, y) is such that  D < 0. 

 

Among the most important partial differential equations in engineering are: 

 

The wave equation:  
2

2 2

2

u
c u

t


 


    

or its one-dimensional special case 
2 2

2

2 2

u u
c

t x

 


 
 [which is hyperbolic everywhere] 

(where u is the displacement and c is the speed of the wave); 

 

The heat (or diffusion) equation:  2u
K u K u

t



  


     

a one-dimensional special case of which is  

 
2

2

u K u

t x

 


 
  [which is parabolic everywhere] 

(where u is the temperature, μ is the specific heat of the medium, ρ is the density and K is 

the thermal conductivity); 
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The potential (or Laplace’s) equation: 2 0u   

a special case of which is  
2 2

2 2
0

u u

x y

 
 

 
  [which is elliptic everywhere] 

 

The complete solution of a PDE requires additional information, in the form of initial 

conditions (values of the dependent variable and its first partial derivatives at t = 0), 

boundary conditions (values of the dependent variable on the boundary of the domain) or 

some combination of these conditions. 

 

 

 

d’Alembert Solution    
 

Example 11.01     

 

In Term 3 (example 4.8.5 in ENGI 3424) we saw that   

  
   

,
2

f x ct f x ct
y x t

  
  

is a solution to the wave equation 

 
2 2

2 2 2

1
0

y y

x c t

 
 

 
 

This solution also satisfies the initial conditions    ,0y x f x   and   
0

, 0

t

y x t
t 





 

for any twice differentiable function  f x .   

 

 

A more general d’Alembert solution to the wave equation for an infinitely long string is  

 

 
   

 
1

,
2 2

x ct

x ct

f x ct f x ct
y x t g u du

c





  
    

 

This satisfies the wave equation  

   
2 2

2

2 2
for and 0

y y
c x t

t x

 
     

 
 

and 

Initial configuration of string:     ,0y x f x           for  x  

and 

Initial speed of string:   

 
 

,0

for

x

y
g x x

t


 


 

for any twice differentiable functions  f (x)  and  g(x). 
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Physically, this represents two identical waves, moving with speed c in opposite 

directions along the string. 

 

 

Proof that    
1

,
2

x ct

x ct
y x t g u du

c




   satisfies both initial conditions:  

       
1 1

, ,0 0
2 2

x ct x

x ct x
y x t g u du y x g u du

c c




      

 

For the other condition, we require Leibnitz differentiation of a definite integral: 

 
 

 
     

 

 
, , ,

b x b x

a x a x

d db da f
f x t dt f x b x f x a x dt

dx dx dx x
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Example 11.02    

An elastic string of infinite length is displaced into the form cos
2

x
y

 
  

 
 on  1,1  

only (and y = 0 elsewhere) and is released from rest.   Find the displacement  ,y x t   at 

all locations on the string x  and at all subsequent times (t > 0). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

See the web page "www.engr.mun.ca/~ggeorge/4430/demos/ex1102.html" for 

an animation of this solution. 

file:///C:/www/4430/demos/ex1102.html
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Example 11.02    (continued) 

 

Some snapshots of the solution are shown here:  
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A more general case of a d’Alembert solution arises for the homogeneous PDE with 

constant coefficients 
2 2 2

2 2
0

u u u
A B C

x x y y

  
  

   
 

 

The characteristic (or auxiliary) equation for this PDE is  
2 0A B C     

This leads to the complementary function (which is also the general solution for this 

homogeneous PDE) 

     1 1 2 2, ,u x y f y x f y x      

where 

1 2and
2 2

B D B D

A A
 

   
   

and 2 4D B AC    

and 1 2,f f  are arbitrary twice-differentiable functions of their arguments. 

1  and 
2  are the roots (or eigenvalues) of the characteristic equation. 

 

In the event of equal roots, the solution changes to  

       1 2, ,u x y f y x h x y f y x      

where  ,h x y  is any non-trivial linear function of x and/or y  

(except any multiple of y x ). 

 

The wave equation is a special case with 
2

1
, 1, 0,y t A B C

c
       and  

1

c
   .   

 

Note how this method has some similarities with a method for solving second order linear 

ordinary differential equations with constant coefficients (in ENGI 3424 or equivalent). 
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Example 11.03     

 

 

 

2 2 2

2 2

2

3 2 0

,0

,0 0y

u u u

x x y y

u x x

u x

  
  

   

 



 

 

(a) Classify the partial differential equation. 

 (b) Find the value of  u  at  (x, y)  =  (0, 1). 

 

 

(a) Compare this PDE to the standard form  

 
2 2 2

2 2
0

u u u
A B C

x x y y
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Example 11.03    (continued) 
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Example 11.04     

 

Find the complete solution to  

 

 

2 2 2

2 2
6 5 14 ,

,0 2 1,

,0 4 6 .y

u u u

x x y y

u x x

u x x

  
  

   

 

 

 

 

 

This PDE is non-homogeneous.    

 

For the particular solution, we require a function such that the combination of second 

partial derivatives resolves to the constant 14.   It is reasonable to try a quadratic function 

of x and y as our particular solution. 

 

Try 2 2

Pu ax bxy cy       

 

 

 



ENGI 4430 PDEs - d’Alembert Solutions Page 11.10 

 

 

Example 11.04    (continued) 
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Example 11.04  -  Alternative Treatment of the Particular Solution   

 

Find the complete solution to  

 

 

2 2 2

2 2
6 5 14 ,

,0 2 1,

,0 4 6 .y

u u u

x x y y

u x x

u x x

  
  

   

 

 

 

 

 

This PDE is non-homogeneous.    

 

For the particular solution, we require a function such that the combination of second 

partial derivatives resolves to the constant 14.   It is reasonable to try a quadratic function 

of x and y as our particular solution. 

 

Try 2 2

Pu ax bxy cy       

 

P P2 and 2
u u

ax by bx cy
x y

 
    

 
 

2 2 2

P P P

2 2
2 , and 2

u u u
a b c

x x y y

  
   

   
 

2 2 2

P P P

2 2
6 5 12 5 2 14

u u u
a b c

x x y y

  
      

   
 

We have one condition on three constants, two of which are therefore a free choice. 

 

Let us leave the free choice unresolved for now. 

 

Complementary function: 

 

5 1 1 1
or

12 3 2


 
   

The complementary function is  

      C
1 1
3 2

,u x y f y x g y x     

and the general solution is  
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Example 11.04    (continued) 
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Example 11.04    (continued) 
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Example 11.05     

 

Find the complete solution to  
2 2 2

2 2
2 0 ,

u u u

x x y y

  
  

   
 

u = 0   on   x = 0 ,  

u =  x
2
   on   y = 1 . 
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Example 11.05     -  Alternative Treatment of the Complementary Function 

 

Find the complete solution to  
2 2 2

2 2
2 0 ,

u u u

x x y y

  
  

   
 

u = 0   on   x = 0 ,  

u =  x
2
   on   y = 1 . 

 

 

1, 2, 1 4 4 1 0A B C D         

2 0
1 or 1

2


 
     

The complementary function (and general solution) is  

        , ,u x y f y x h x y g y x     

where  ,h x y  is any convenient non-trivial linear function of  ,x y  except a multiple of  

 y x .   The most general choice possible is  
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Example 11.05 Extension (continued) 
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Two-dimensional Laplace Equation  
 

2 2

2 2
0

u u

x y

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

A function  ,f x y  is harmonic if and only if 2 0f   everywhere inside a domain  . 

 

 

Example 11.06  

 

Is sinxu e y  harmonic on 2 ?  
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Example 11.07 

 

Find the complete solution  ,u x y  to the partial differential equation 2 0u  , given the 

additional information  

  30,u y y     and    

0

0

x

u

x






 

 

 

The PDE is 
2 2

2

2 2
0

u u
u

x y

 
   

 
 

(which means that the solution  ,u x y  is an harmonic function). 

21, 0 4 4 0A C B D B AC           

The PDE is elliptic everywhere. 

 

A.E.: 2 1 0 j       

C.F.:      C ,u x y f y jx g y jx     

The PDE is homogeneous     

P.S.:  P , 0u x y   

G.S.:      ,u x y f y jx g y jx     

     ,xu x y j f y jx j g y jx        

Using the additional information, 

             3 3 20, 3u y f y g y y g y y f y g y y f y           

and 

          20, 0 3xu y j f y j g y j f y y f y            

     2 3 31
2

2 3 2f y y f y y f y y       

  3 3 31 1
2 2

g y y y y     

Therefore the complete solution is 

     
3 31 1

2 2
,u x y y jx y jx     

 3 21
2

3y jx y     
2 3

3 jx y jx   3 23y jx y     
2 3

3 jx y jx    

3 2 23y j x y    

 

  3 2, 3u x y y x y   

 

Note that the solution is completely real, even though the eigenvalues are not real. 
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Summary:  

 

For the partial differential equation   
2 2 2

2 2
,

u u u
A B C r x y

x x y y

  
  

   
 

the general solution is the sum of a complementary function and a particular solution 

     , , ,C Pu x y u x y u x y   

 

Complementary function:  

Find  2 4D B AC    then  
2

B D

A


 
   

     1 2,Cu x y f y x g y x         

unless  0D  , in which case         , ,Cu x y f y x h x y g y x        where   

 ,h x y  is any convenient linear function that is not a constant multiple of y x . 

 

Particular solution:  

 

If  , 0r x y   (homogeneous PDE) then trivially   , 0Pu x y  . 

If  ,r x y   is a non-zero constant, then try    2 2,Pu x y ax bxy cy    

If  ,r x y   is a linear function  ,r x y lx my  , then  

try   3 2 2 3,Pu x y ax bx y cxy dy     

In this course no other forms of  ,r x y  will be examinable. 

 

 

Apply initial / boundary conditions only after finding the general solution, in order to 

find the arbitrary functions    1 2,f y x g y x    and therefore the complete solution. 
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[Space for Additional Notes] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 [End of Chapter 11] 
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