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11. Partial Differential Equations

Partial differential equations (PDEs) are equations involving functions of more than one
variable and their partial derivatives with respect to those variables.

Most (but not all) physical models in engineering that result in partial differential
equations are of at most second order and are often linear. (Some problems such as
elastic stresses and bending moments of a beam can be of fourth order). In this course
we shall have time to look at only a very small subset of second order linear partial
differential equations.

Major Classifications of Common PDEs

A general second order linear partial differential equation in two Cartesian variables can
be written as

o’u o’u o’u ou ou
A(x,y)ﬁ + B(X'y)axay + C(x,y)a—y2 = f[x,y,u,—x,—J

Three main types arise, based on the value of D = B?— 4AC (a discriminant):
Hyperbolic, wherever (X, y) is such that D > 0;

Parabolic, wherever (x, y) is such that D =0;

Elliptic, wherever (x, y) is such that D < 0.

Among the most important partial differential equations in engineering are:

2

i o°u
The wave equation: el c* Vi

. . . . o%u , 0°U
or its one-dimensional special case proi c PV
X

(where u is the displacement and c is the speed of the wave);

[which is hyperbolic everywhere]

The heat (or diffusion) equation: ,upg—l: = K VU + VK-Vu

a one-dimensional special case of which is
u_ K
ot up ox

(where u is the temperature, x is the specific heat of the medium, p is the density and K is

the thermal conductivity);

[which is parabolic everywhere]
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The potential (or Laplace’s) equation: Viu=0
: .. du L
a special case of which is F+—2 = 0 [which is elliptic everywhere]
X y

The complete solution of a PDE requires additional information, in the form of initial
conditions (values of the dependent variable and its first partial derivatives at t=0),
boundary conditions (values of the dependent variable on the boundary of the domain) or
some combination of these conditions.

d’Alembert Solution

Example 11.01

In Term 3 (example 4.8.5 in ENGI 3424) we saw that

f(x+ct) + f(x—ct
() = e el
is a solution to the wave equation

This solution also satisfies the initial conditions y(x,0)= f (x) and %y(x,t) =0
t=0

for any twice differentiable function f (x).

A more general d’ Alembert solution to the wave equation for an infinitely long string is

y(xt) = f(x+ct) + f(x—ct) . ij.xm

d
2 2c g(u) “

x—ct

This satisfies the wave equation
2 2
8_2/:(:28_32/ for —o < x<ow and t>0
ot OX
and
Initial configuration of string: y(x,0)=f(x) for xeR
and

¥
at (X,O)
for any twice differentiable functions f (x) and g(x).

Initial speed of string: = g(x) for xeR
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Physically, this represents two identical waves, moving with speed c in opposite
directions along the string.

X+ct
Proof that y(x,t) = ziJ' g(u)du satisfies both initial conditions:
c

x—ct
1
/) = o

X+ct

g(u)du = y(x0) = %j:g(u)du =0 Ve

x—ct

For the other condition, we require Leibnitz differentiation of a definite integral:

da .\ J~b(x)af

d (b0 db
&fa(x) f(xt)dt = f(xb(x) 2 - f(xa(x)) i ox &
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Example 11.02

An elastic string of infinite length is displaced into the form y=cos(%xj on [—1, 1]

only (and y = 0 elsewhere) and is released from rest. Find the displacement y(x,t) at
all locations on the string x € R and at all subsequent times (t > 0).

See the web page "www.engr.mun.ca/~ggeorge/4430/demos/ex1102.html1" for
an animation of this solution.



file:///C:/www/4430/demos/ex1102.html
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Example 11.02 (continued)

Some snapshots of the solution are shown here:

ct=00 ct=05

3 2 1 2 3 3 2 1 2 3
H H
ct=07 ct=0.85
14 1]
0.84 ned
3 1 2 3 3 1 2 3
H H
ct=1.0 ct=2.0
14 1]
0.8 0.6
0.5
¥
0.4
0.2
5 3 3 2 R 1 2 3
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A more general case of a d’Alembert solution arises for the homogeneous PDE with
constant coefficients
2 2 2
adY g oY L c0U_y
OoX oX oy oy

The characteristic (or auxiliary) equation for this PDE is
AV +BA+C =0

This leads to the complementary function (which is also the general solution for this
homogeneous PDE)

u(x,y) = fl(y+/11x) + fz(y+12x),

where

B —B++D

A
! 2A

X’Z

= ﬂ and
2A

and D=B?-4AC
and f,, f, are arbitrary twice-differentiable functions of their arguments.
A, and A4, are the roots (or eigenvalues) of the characteristic equation.

In the event of equal roots, the solution changes to
u(x,y) = fi(y+1x) + h(x,y) f,(y+1x)
where h(x,y) is any non-trivial linear function of x and/or y
(except any multiple of y+ Ax).
1 1

The wave equation is a special case with y=t, A=1, B=0, C=-= and A=+-.
C c

Note how this method has some similarities with a method for solving second order linear
ordinary differential equations with constant coefficients (in ENGI 3424 or equivalent).
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Example 11.03

o°u o°u o%u
> — 3 +2— =
OX oxXoy oy

@ Classify the partial differential equation.
(b)  Find the value of u at (x,y) = (0, 1).

@ Compare this PDE to the standard form

2 2 2
U B 2L s el
0X ox oy oy
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Example 11.03 (continued)




ENGI 4430 PDEs - d’Alembert Solutions

Page 11.09

Example 11.04

Find the complete solution to
5 o°u o°u o%u

-5 + 2= 214,
ox? oxoy oy’
u(x,0) = 2x+1,
uy(x,O) = 4-6X.

This PDE is nhon-homogeneous.

For the particular solution, we require a function such that the combination of second
partial derivatives resolves to the constant 14. It is reasonable to try a quadratic function

of x and y as our particular solution.

Try  u, =ax® +bxy +cy?
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Example 11.04 (continued)
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Example 11.04 - Alternative Treatment of the Particular Solution

Find the complete solution to
5 o°u o°u o%u

-5 + 2= =14,
ox? oxoy oy’
u(x,0) = 2x+1,
uy(x,O) = 4-6X.

This PDE is non-homogeneous.

For the particular solution, we require a function such that the combination of second
partial derivatives resolves to the constant 14. It is reasonable to try a quadratic function
of x and y as our particular solution.

Try  u, =ax® +bxy +cy?

W = 2ax+by and W = bx + 2cy
OX oy

2 2 2
8u2p =2a, Oy =b and au,f = 2C
OX ox oy oy
2 2 2
g% 50U O o0 ghyoc = 14

ox? oxoy  oy?
We have one condition on three constants, two of which are therefore a free choice.

Let us leave the free choice unresolved for now.

Complementary function:

+
g:+5_ﬁ:lor1

12 3 2
The complementary function is

U (X,y) = f(y+%x) + g(y+%x)
and the general solution is
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Example 11.04 (continued)
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Example 11.04 (continued)
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Example 11.05

Find the complete solution to
o%u o%u o%u
> + 2 + =
oX oxXoy 0y
u=0 on x=0,
u=x* on y=1.

:O’
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Example 11.05 - Alternative Treatment of the Complementary Function

Find the complete solution to
2 2 2
al:+2 ou +au2:O,
oX oxXoy 0y
u=0 on x=0,
u=x* on y=1.

A=1,B=2,C=1 = D=4-4x1=0

2+

The complementary function (and general solution) is
u(x,y) = f(y-x)+h(x,y)g(y-x)
where h(x,y) is any convenient non-trivial linear function of (x,y) except a multiple of

(y—x). The most general choice possible is
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Example 11.05 Extension (continued)
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Two-dimensional Laplace Equation

7
x>

o

oy’

=0

A function f (x,y) is harmonic if and only if V*f =0 everywhere inside a domain Q.

Example 11.06

Is u=e"siny harmonic on R??
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Example 11.07

Find the complete solution u(x, y) to the partial differential equation V?u =0, given the
additional information
ou

u(0,y)=y* and ™ =0
x=0

The PDE is
2 2
Vi = a—l:+a—l; =
ox~ oy

(which means that the solution u(x, y) is an harmonic function).

= A=C=1, B=0 = D=B?’-4AC=-4<0
The PDE is elliptic everywhere.

0

AE: A2+41=0 = A=+]j

CF. us(xy)=f(y—ix)+g(y+ix)

The PDE is homogeneous =

PS: u(xy)=0

G.S.: u(xy)=f(y—ix)+g(y+ix)

= U (xy)=—jf'(y=ix)+ jg'(y+ix)

Using the additional information,

u@y)=f(y)+a(y)=y> = a(y)=y'-f(y) = 9'(y)=3y"-1'(y)
and

U (0,y) =0 =—=jf'(y)+ ig'(y) = i(-f'(y)+3y* = f'(y))
= 2f'(y)=3y> = 2f(y)=y’ = f(y)=3y°

= g(y)=y' -3y’ =31y°

Therefore the complete solution is

u(xy) = 3(y=ix)° + H(y+ix)°

= 4" - 309 + 301"y = (3% + v+ 30T +3(00)7 v+ (19° )

=y +3j%%%y =

u(x,y) = y*—3x%y

Note that the solution is completely real, even though the eigenvalues are not real.
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Summary:

2 2 2
0 lj + B ou + C 0 li
OX oX oy oy
the general solution is the sum of a complementary function and a particular solution
u(x,y)=uc (X y)+Uus(xYy)

For the partial differential equation A

=r(xY)

Complementary function:

B+D

2A
Ue (X,y) = f(y+ﬂlx)+ g(y+/12x)
unless D=0, inwhichcase U.(x y) = f(y+4x)+h(x,y)-g(y+4x) where

Find D=B?-4AC then A=

h(x,y) is any convenient linear function that is not a constant multiple of y + x.

Particular solution:

If r(x,y)=0 (homogeneous PDE) then trivially u,(x,y)=0.
If r(x,y) isanon-zero constant, thentry u,(X,y)=ax’+bxy+cy?
If r(x,y) isalinear function r(x,y)=Ix+my, then

try U, (X, y)=ax’ +bx’y +cxy’ +dy’

In this course no other forms of r(x, y) will be examinable.

Apply initial / boundary conditions only after finding the general solution, in order to
find the arbitrary functions f (y+4,x), g(y+4,x) and therefore the complete solution.
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[Space for Additional Notes]

[End of Chapter 11]
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