13. Suggestions for the Formula Sheets

Below are some suggestions for many more formulae than can be placed easily on both sides of the two standard $81 / 2 " \times 11^{\prime \prime}$ sheets of paper for the final examination. It is strongly recommended that students compose their own formula sheets, to suit each individual's needs.

1. Parametric and Polar Curves

Distance $r(t)=|\overrightarrow{\mathbf{r}}(t)|=\sqrt{(x(t))^{2}+(y(t))^{2}+(z(t))^{2}}$
To sketch $\overrightarrow{\mathbf{r}}(t)=x(t) \hat{\mathbf{i}}+y(t) \hat{\mathbf{j}}$: Find all values of t at which any of $x(t), y(t)$, $x^{\prime}(t), y^{\prime}(t)$ are zero, then construct a table for all four functions.
$\frac{d y}{d t}=0$ and $\frac{d x}{d t} \neq 0 \Rightarrow$ horizontal tangent
$\frac{d y}{d t} \neq 0$ and $\frac{d x}{d t}=0 \Rightarrow$ vertical tangent

Polar coordinates: $\quad x=r \cos \theta, y=r \sin \theta ; \quad r^{2}=x^{2}+y^{2}, \tan \theta=\frac{y}{x}$ $(r, \theta+2 n \pi)$ and $(-r, \theta+(2 n+1) \pi) \quad(n \in \mathbb{Z})$ are the same point as (r, θ).
To sketch $r=f(\theta)$, sketch Cartesian $y=f(x)$ with $y=r, x=\theta$, then transfer onto a polar sketch.
$r\left(\theta_{\mathrm{o}}\right)=0$ and $r^{\prime}\left(\theta_{\mathrm{o}}\right) \neq 0 \Rightarrow \theta=\theta_{\mathrm{o}}$ is a tangent at the pole.

2. Vectors

The component of vector $\overline{\mathbf{u}}$ in the direction of vector $\stackrel{\rightharpoonup}{\mathbf{v}}$ is $u_{v}=\overrightarrow{\mathbf{u}} \cdot \hat{\mathbf{v}}=u \cos \theta$

$$
\frac{d}{d t}(\stackrel{\rightharpoonup}{\mathbf{u}} \cdot \stackrel{\rightharpoonup}{\mathbf{v}})=\frac{d \stackrel{\rightharpoonup}{\mathbf{u}}}{d t} \cdot \stackrel{\rightharpoonup}{\mathbf{v}}+\stackrel{\rightharpoonup}{\mathbf{u}} \cdot \frac{d \stackrel{\rightharpoonup}{\mathbf{v}}}{d t} \text { and }
$$

$$
\frac{d}{d t}(\stackrel{\rightharpoonup}{\mathbf{u}} \times \stackrel{\rightharpoonup}{\mathbf{v}})=\frac{d \stackrel{\rightharpoonup}{\mathbf{u}}}{d t} \times \stackrel{\rightharpoonup}{\mathbf{v}}+\stackrel{\mathbf{u}}{ } \times \frac{d \stackrel{\rightharpoonup}{\mathbf{v}}}{d t}=-\stackrel{\rightharpoonup}{\mathbf{v}} \times \frac{d \stackrel{\rightharpoonup}{\mathbf{u}}}{d t}+\stackrel{\rightharpoonup}{\mathbf{u}} \times \frac{d \stackrel{\rightharpoonup}{\mathbf{v}}}{d t}
$$

The distance along a curve between two points whose parameter values are t_{0} and t_{1} is

$$
L=\int_{t=t_{0}}^{t=t_{1}} d s=\int_{t_{0}}^{t_{1}} \frac{d s}{d t} d t=\int_{t_{0}}^{t_{1}}\left|\frac{d \overline{\mathbf{r}}}{d t}\right| d t=\int_{t_{0}}^{t_{1}} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t
$$

The distance along a polar curve $r=f(\theta)$ is $L=\int_{\alpha}^{\beta} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta$
The unit tangent at any point on a curve is

$$
\hat{\mathbf{T}}=\frac{d \stackrel{\rightharpoonup}{\mathbf{r}}}{d t} \div\left|\frac{d \overrightarrow{\mathbf{r}}}{d t}\right|=\frac{d \overrightarrow{\mathbf{r}}}{d s}
$$

The unit principal normal at any point on a curve is

$$
\hat{\mathbf{N}}=\rho \frac{d \hat{\mathbf{T}}}{d s}=\frac{d \hat{\mathbf{T}}}{d t} \div\left|\frac{d \hat{\mathbf{T}}}{d t}\right|, \quad \text { where } \rho=\text { radius of curvature }=\frac{1}{\kappa}
$$

The unit binormal is

$$
\hat{\mathbf{B}}=\hat{\mathbf{T}} \times \hat{\mathbf{N}}
$$

Velocity is $\overrightarrow{\mathbf{v}}(t)=\frac{d \overrightarrow{\mathbf{r}}}{d t}$, speed is $v(t)=|\stackrel{\rightharpoonup}{\mathbf{v}}(t)|=\left|\frac{d \overrightarrow{\mathbf{r}}}{d t}\right|=\frac{d s}{d t} \quad$ and $\quad \stackrel{\rightharpoonup}{\mathbf{v}}=v \hat{\mathbf{T}}$

The acceleration [vector] is

$$
\stackrel{\rightharpoonup}{\mathbf{a}}(t)=\frac{d \stackrel{\rightharpoonup}{\mathbf{v}}}{d t}=\frac{d^{2} \stackrel{\rightharpoonup}{\mathbf{r}}}{d t^{2}}=\frac{d^{2} x}{d t^{2}} \hat{\mathbf{i}}+\frac{d^{2} y}{d t^{2}} \hat{\mathbf{j}}+\frac{d^{2} z}{d t^{2}} \hat{\mathbf{k}}=a_{T} \hat{\mathbf{T}}+a_{N} \hat{\mathbf{N}}
$$

where $a_{T}=\frac{d v}{d t}=\overrightarrow{\mathbf{a}} \cdot \hat{\mathbf{T}}=\frac{\overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{a}}}{v}$ and $a_{N}=\kappa v^{2}=\sqrt{a^{2}-a_{T}{ }^{2}}=\overrightarrow{\mathbf{a}} \cdot \hat{\mathbf{N}}=\frac{|\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{a}}|}{v}$

The surface of revolution of $y=f(x)$ around $y=c$ is $(y-c)^{2}+z^{2}=(f(x)-c)^{2}$
The curved surface area from $x=a$ to $x=b$ is $A=2 \pi \int_{a}^{b}|f(x)-c| \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$
The area between a curve and the x axis is $A=\int_{t_{a}}^{t_{b}}|y(t)| \frac{d x}{d t} d t$
The area swept out by a polar curve $(\alpha<\theta<\beta<\alpha+2 \pi)$ is $A=\frac{1}{2} \int_{\alpha}^{\beta} r^{2} d \theta$
Components of velocity: $v_{\text {radial }}=\dot{r}, \quad v_{\text {transverse }}=r \dot{\theta}, \quad v_{T}=v, \quad v_{N} \equiv 0$
Components of acceleration:

$$
a_{\text {radial }}=\ddot{r}-r(\dot{\theta})^{2}, \quad a_{\text {transverse }}=2 \dot{r} \dot{\theta}+r \ddot{\theta}=\frac{1}{r} \frac{d}{d t}\left(r^{2} \dot{\theta}\right), \quad a_{T}=\frac{d v}{d t}, \quad a_{N}=\kappa v^{2}=\sqrt{a^{2}-a_{T}^{2}}
$$

Line parallel to $\left[\begin{array}{lll}a & b & c\end{array}\right]^{\mathrm{T}}$ through $\left(x_{\mathrm{o}}, y_{\mathrm{o}}, z_{\mathrm{o}}\right)$ is $\frac{x-x_{\mathrm{o}}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}$
(except where any of a, b, c is zero)
Plane normal to $\left[\begin{array}{lll}A & B & C\end{array}\right]^{\mathrm{T}}$ containing $\left(x_{0}, y_{0}, z_{0}\right)$ is $A x+B y+C z+D=0$, where $D=-\left(A x_{\mathrm{o}}+B y_{\mathrm{o}}+C z_{\mathrm{o}}\right)$

3. Multiple Integrals

$\iint_{D} f(x, y) d A=\int_{a}^{b} \int_{g(x)}^{h(x)} f(x, y) d y d x=\int_{c}^{d} \int_{p(y)}^{q(y)} f(x, y) d x d y$
or $\iint_{D} f(x, y) d A=\int_{\alpha}^{\beta} \int_{r_{1}(\theta)}^{r_{2}(\theta)} f(r, \theta) r d r d \theta$
Centre of mass: $\langle\overrightarrow{\mathbf{r}}\rangle=\frac{\overrightarrow{\mathbf{M}}}{m}=\left(\iint_{D} \sigma \overrightarrow{\mathbf{r}} d A\right) \div\left(\iint_{D} \sigma d A\right)$ or $\left(\iiint_{V} \rho \overrightarrow{\mathbf{r}} d V\right) \div\left(\iiint_{V} \rho d V\right)$
Moment of inertia $I_{x}=\iint_{R} y^{2} \sigma d A, \quad I_{y}=\iint_{R} x^{2} \sigma d A, \quad I=I_{x}+I_{y}=\iint_{R} r^{2} \sigma d A$
Parallel axis theorem, second moment $I_{x^{\prime}}$ of mass m about axis $y=y_{0}$ a distance b from the axis $y=\bar{y}$ through the centre of mass: $I_{x^{\prime}}=I_{x}+m b^{2}$

4. Streamlines (lines of force)

Streamlines to $\stackrel{\rightharpoonup}{\mathbf{F}}=\left[\begin{array}{lll}f_{1} & f_{2} & f_{3}\end{array}\right]^{\mathrm{T}}$ are the solutions of $\frac{d \stackrel{\rightharpoonup}{\mathbf{r}}}{d s}=k \stackrel{\rightharpoonup}{\mathbf{F}}$ $\Rightarrow \frac{d x}{f_{1}}=\frac{d y}{f_{2}}=\frac{d z}{f_{3}}$ (except that $f_{i}=0 \Rightarrow$ that component is constant).

5. Numerical Integration

[a, b] divided into n equal intervals. $\quad h=\frac{b-a}{n}$
Trapezoidal rule: $\int_{a}^{b} f(x) d x \approx \frac{h}{2}\left(f_{0}+2 f_{1}+2 f_{2}+\ldots+2 f_{n-1}+f_{n}\right)$

Simpson's rule:

$$
\int_{a}^{b} f(x) d x \approx \frac{h}{3}\left(f_{0}+4 f_{1}+2 f_{2}+4 f_{3}+2 f_{4}+\ldots+2 f_{n-2}+4 f_{n-1}+f_{n}\right)
$$

Newton's method to solve $f(x)=0: \quad x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$

6. The Gradient Vector

The directional derivative of f in the direction of the unit vector $\hat{\mathbf{u}}$ is $D_{\hat{\mathbf{u}}} f=\vec{\nabla} f \cdot \hat{\mathbf{u}}$ $\frac{d f}{d t}=\vec{\nabla} f \cdot \frac{d \overrightarrow{\mathbf{r}}}{d t}, \quad$ where $\quad \vec{\nabla} f=\left[\frac{\partial f}{\partial x_{1}} \frac{\partial f}{\partial x_{2}} \cdots \frac{\partial f}{\partial x_{n}}\right]^{\mathrm{T}} \quad$ and $\frac{d \overrightarrow{\mathbf{r}}}{d t}=\left[\frac{d x_{1}}{d t} \frac{d x_{2}}{d t} \cdots \frac{d x_{n}}{d t}\right]^{\mathrm{T}}$

Tangent plane to $f(x, y, z)=c$ at $P\left(x_{0}, y_{\mathrm{o}}, z_{\mathrm{o}}\right)$ is $\overrightarrow{\mathbf{n}} \cdot \overrightarrow{\mathbf{r}}=\overrightarrow{\mathbf{n}} \cdot \overrightarrow{\mathbf{r}}_{\mathrm{o}}$, where $\overrightarrow{\mathbf{n}}=\left.\vec{\nabla} f\right|_{P}$.

If $\overrightarrow{\mathbf{v}}(x, y)=u(x, y) \hat{\mathbf{i}}+v(x, y) \hat{\mathbf{j}}$ and $\operatorname{div} \overrightarrow{\mathbf{v}}=\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0$, then the stream function $\psi(x, y)$ exists such that $\frac{\partial \psi}{\partial x}=v$ and $\frac{\partial \psi}{\partial y}=-u$. Streamlines are $\psi(x, y)=c$.

$$
\begin{aligned}
& \stackrel{\rightharpoonup}{\nabla} \times \vec{\nabla} f=\operatorname{curl} \operatorname{grad} f=\overrightarrow{\mathbf{0}} \\
& \vec{\nabla} \cdot \stackrel{\rightharpoonup}{\nabla} \times \stackrel{\rightharpoonup}{\mathbf{F}}=\operatorname{div} \operatorname{curl} \stackrel{\rightharpoonup}{\mathbf{F}}=0 \\
& \stackrel{\rightharpoonup}{\nabla}(f g)=(\stackrel{\rightharpoonup}{\nabla} f) g+f(\stackrel{\rightharpoonup}{\nabla} g)
\end{aligned}
$$

Laplacian of $V=\nabla^{2} V=\vec{\nabla} \cdot(\vec{\nabla} V)=\operatorname{div} \operatorname{grad} V$

7. Conversions between Coordinate Systems

To convert a vector expressed in Cartesian components $v_{x} \hat{\mathbf{i}}+v_{y} \hat{\mathbf{j}}+v_{z} \hat{\mathbf{k}}$ into the equivalent vector expressed in cylindrical polar coordinates $v_{\rho} \hat{\boldsymbol{\rho}}+v_{\phi} \hat{\boldsymbol{\phi}}+v_{z} \hat{\mathbf{k}}$, express the Cartesian components v_{x}, v_{y}, v_{z} in terms of (ρ, ϕ, z) using $x=\rho \cos \phi, y=\rho \sin \phi, z=z$; then evaluate

$$
\left[\begin{array}{l}
v_{\rho} \\
v_{\phi} \\
v_{z}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \phi & \sin \phi & 0 \\
-\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
v_{x} \\
v_{y} \\
v_{z}
\end{array}\right]
$$

Use the inverse matrix [= transpose] to transform back to Cartesian coordinates.
To convert a vector expressed in Cartesian components $v_{x} \hat{\mathbf{i}}+v_{y} \hat{\mathbf{j}}+v_{z} \hat{\mathbf{k}}$ into the equivalent vector expressed in spherical polar coordinates $v_{r} \hat{\mathbf{r}}+v_{\theta} \hat{\boldsymbol{\theta}}+v_{\phi} \hat{\boldsymbol{\phi}}$, express the Cartesian components v_{x}, v_{y}, v_{z} in terms of (r, θ, ϕ) using $x=r \sin \theta \cos \phi, \quad y=r \sin \theta \sin \phi, \quad z=r \cos \theta ;$ then evaluate

$$
\left[\begin{array}{l}
v_{r} \\
v_{\theta} \\
v_{\phi}
\end{array}\right]=\left[\begin{array}{ccc}
\sin \theta \cos \phi & \sin \theta \sin \phi & \cos \theta \\
\cos \theta \cos \phi & \cos \theta \sin \phi & -\sin \theta \\
-\sin \phi & \cos \phi & 0
\end{array}\right]\left[\begin{array}{l}
v_{x} \\
v_{y} \\
v_{z}
\end{array}\right]
$$

Use the inverse matrix [= transpose] to transform back to Cartesian coordinates.

Basis Vectors

Cylindrical Polar:

$$
\begin{aligned}
\frac{d}{d t} \hat{\boldsymbol{\rho}} & =\frac{d \phi}{d t} \hat{\boldsymbol{\phi}} \\
\frac{d}{d t} \hat{\boldsymbol{\phi}} & =-\frac{d \phi}{d t} \hat{\boldsymbol{\rho}} \\
\frac{d}{d t} \hat{\mathbf{k}} & =\overrightarrow{\mathbf{0}}
\end{aligned}
$$

Spherical Polar:

$$
\begin{aligned}
& \frac{d \hat{\mathbf{r}}}{d t}=\frac{d \theta}{d t} \hat{\boldsymbol{\theta}}+\sin \theta \frac{d \phi}{d t} \hat{\boldsymbol{\phi}} \\
& \frac{d \hat{\boldsymbol{\theta}}}{d t}=-\frac{d \theta}{d t} \hat{\mathbf{r}}+\cos \theta \frac{d \phi}{d t} \hat{\boldsymbol{\phi}} \\
& \frac{d \hat{\boldsymbol{\phi}}}{d t}=-(\sin \theta \hat{\mathbf{r}}+\cos \theta \hat{\boldsymbol{\theta}}) \frac{d \phi}{d t} \\
& \mathbf{r}=r \hat{\mathbf{r}} \quad \Rightarrow \overrightarrow{\mathbf{v}}=\dot{r} \hat{\mathbf{r}}+r \dot{\theta} \hat{\boldsymbol{\theta}}+r \sin \theta \dot{\phi} \hat{\boldsymbol{\phi}}
\end{aligned}
$$

Gradient operator in any orthonormal coordinate system

Gradient operator

$$
\vec{\nabla}=\frac{\hat{\mathbf{e}}_{1}}{h_{1}} \frac{\partial}{\partial u_{1}}+\frac{\hat{\mathbf{e}}_{2}}{h_{2}} \frac{\partial}{\partial u_{2}}+\frac{\hat{\mathbf{e}}_{3}}{h_{3}} \frac{\partial}{\partial u_{3}}
$$

Gradient

$$
\stackrel{\rightharpoonup}{\nabla} V=\frac{\hat{\mathbf{e}}_{1}}{h_{1}} \frac{\partial V}{\partial u_{1}}+\frac{\hat{\mathbf{e}}_{2}}{h_{2}} \frac{\partial V}{\partial u_{2}}+\frac{\hat{\mathbf{e}}_{3}}{h_{3}} \frac{\partial V}{\partial u_{3}}
$$

Divergence

$$
\stackrel{\rightharpoonup}{\nabla} \bullet \stackrel{\rightharpoonup}{\mathbf{F}}=\frac{1}{h_{1} h_{2} h_{3}}\left(\frac{\partial\left(h_{2} h_{3} f_{1}\right)}{\partial u_{1}}+\frac{\partial\left(h_{3} h_{1} f_{2}\right)}{\partial u_{2}}+\frac{\partial\left(h_{1} h_{2} f_{3}\right)}{\partial u_{3}}\right)
$$

Curl

$$
\stackrel{\nabla}{\nabla} \times \stackrel{\rightharpoonup}{\mathbf{F}}=\frac{1}{h_{1} h_{2} h_{3}}\left|\begin{array}{ccc}
h_{1} \hat{\mathbf{e}}_{1} & \frac{\partial}{\partial u_{1}} & h_{1} f_{1} \\
h_{2} \hat{\mathbf{e}}_{2} & \frac{\partial}{\partial u_{2}} & h_{2} f_{2} \\
h_{3} \hat{\mathbf{e}}_{3} & \frac{\partial}{\partial u_{3}} & h_{3} f_{3}
\end{array}\right|
$$

Laplacian $\quad \nabla^{2} V=\frac{1}{h_{1} h_{2} h_{3}}\left(\frac{\partial}{\partial u_{1}}\left(\frac{h_{2} h_{3}}{h_{1}} \frac{\partial V}{\partial u_{1}}\right)+\frac{\partial}{\partial u_{2}}\left(\frac{h_{3} h_{1}}{h_{2}} \frac{\partial V}{\partial u_{2}}\right)+\frac{\partial}{\partial u_{3}}\left(\frac{h_{1} h_{2}}{h_{3}} \frac{\partial V}{\partial u_{3}}\right)\right)$

$$
\begin{aligned}
d V=h_{1} h_{2} h_{3} d u_{1} d u_{2} d u_{3} & =\left|\frac{\partial(x, y, z)}{\partial\left(u_{1}, u_{2}, u_{3}\right)}\right| d u_{1} d u_{2} d u_{3} \\
& =\left|\begin{array}{lll}
\frac{\partial x}{\partial u_{1}} & \frac{\partial x}{\partial u_{2}} & \frac{\partial x}{\partial u_{3}} \\
\frac{\partial y}{\partial u_{1}} & \frac{\partial y}{\partial u_{2}} & \frac{\partial y}{\partial u_{3}} \\
\frac{\partial z}{\partial u_{1}} & \frac{\partial z}{\partial u_{2}} & \frac{\partial z}{\partial u_{3}}
\end{array}\right| d u_{1} d u_{2} d u_{3}
\end{aligned}
$$

Cartesian: $\quad h_{x}=h_{y}=h_{z}=1$
Cylindrical polar: $\quad h_{\rho}=h_{z}=1, \quad h_{\phi}=\rho$
Spherical polar: $\quad h_{r}=1, h_{\theta}=r, h_{\phi}=r \sin \theta$
8. Line Integrals Work done by $\stackrel{\rightharpoonup}{\mathbf{F}}$ along curve C is $W=\int_{C} \stackrel{\rightharpoonup}{\mathbf{F}} \cdot \mathbf{d} \overrightarrow{\mathbf{r}}=\int_{C} \stackrel{\rightharpoonup}{\mathbf{F}} \cdot \frac{d \stackrel{\mathbf{r}}{ }}{d t} d t$

The location $\langle\overrightarrow{\mathbf{r}}\rangle$ of the centre of mass of a wire is $\langle\overrightarrow{\mathbf{r}}\rangle=\frac{\overline{\mathbf{M}}}{m}$, where
$\overrightarrow{\mathbf{M}}=\int_{t_{0}}^{t_{1}} \rho \overline{\mathbf{r}} \frac{d s}{d t} d t, \quad m=\int_{t_{0}}^{t_{1}} \rho \frac{d s}{d t} d t \quad$ and $\quad \frac{d s}{d t}=\left|\frac{d \overrightarrow{\mathbf{r}}}{d t}\right|=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}}$.
If a potential function V for $\overrightarrow{\mathbf{F}}$ exists, then $W=($ potential difference $)=[V]_{\text {start }}^{\text {end }}$

Green's Theorem

For a simple closed curve C enclosing a finite region D of \mathbb{R}^{2} and for any vector function $\overrightarrow{\mathbf{F}}=\left[\begin{array}{ll}f_{1} & f_{2}\end{array}\right]^{\mathrm{T}}$ that is differentiable everywhere on C and everywhere in D,

$$
\oint_{C} \stackrel{\rightharpoonup}{\mathbf{F}} \cdot \mathbf{d} \stackrel{\mathbf{r}}{ }=\iint_{D}\left(\frac{\partial f_{2}}{\partial x}-\frac{\partial f_{1}}{\partial y}\right) d A
$$

Path Independence

When a vector field \mathbf{F} is defined on a simply connected domain Ω, these statements are all equivalent (that is, all of them are true or all of them are false):

- $\overrightarrow{\mathbf{F}}=\vec{\nabla} \phi \quad$ for some scalar field ϕ that is differentiable everywhere in Ω;
- $\overrightarrow{\mathbf{F}}$ is conservative;
- $\int_{C} \overrightarrow{\mathbf{F}} \cdot \mathbf{d} \overrightarrow{\mathbf{r}}$ is path-independent (has the same value no matter which path within Ω is chosen between the two endpoints, for any two endpoints in Ω);
- $\int_{C} \stackrel{\rightharpoonup}{\mathbf{F}} \cdot \mathbf{d} \stackrel{\mathbf{r}}{ }=\phi_{\text {end }}-\phi_{\text {start }}$ (for any two endpoints in Ω);
- $\oint_{C} \overrightarrow{\mathbf{F}} \cdot \mathbf{d} \overrightarrow{\mathbf{r}}=0$ for all closed curves C lying entirely in Ω;
- $\frac{\partial f_{2}}{\partial x}=\frac{\partial f_{1}}{\partial y}$ everywhere in Ω; and
- $\vec{\nabla} \times \overrightarrow{\mathbf{F}}=\overrightarrow{\mathbf{0}}$ everywhere in Ω (so that the vector field $\overrightarrow{\mathbf{F}}$ is irrotational).

There must be no singularities anywhere in the domain Ω in order for the above set of equivalencies to be valid.

9. Surface Integrals - Projection Method

For surfaces $z=f(x, y), \quad \overline{\mathbf{N}}=\left[\begin{array}{lll}-\frac{\partial f}{\partial x} & -\frac{\partial f}{\partial y} & +1\end{array}\right]^{\mathrm{T}}$ and

$$
\iint_{S} g(\overrightarrow{\mathbf{r}}) d S=\iint_{D} g(\overrightarrow{\mathbf{r}}) \sqrt{\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}+1} d A \quad(\text { where } d A=d x d y)
$$

Surface Integrals - Surface Method

With a coordinate grid (u, v) on the surface $S, \iint_{S} g(\overrightarrow{\mathbf{r}}) d S=\iint_{S} g(\overrightarrow{\mathbf{r}})\left|\frac{\partial \overrightarrow{\mathbf{r}}}{\partial u} \times \frac{\partial \overrightarrow{\mathbf{r}}}{\partial v}\right| d u d v$
The total flux of a vector field $\stackrel{\rightharpoonup}{\mathbf{F}}$ through a surface S is
$\Phi=\iint_{S} \stackrel{\rightharpoonup}{\mathbf{F}} \cdot \mathbf{d} \mathbf{S}=\iint_{S} \stackrel{\rightharpoonup}{\mathbf{F}} \cdot \hat{\mathbf{N}} d S=\iint_{S} \overrightarrow{\mathbf{F}} \cdot \frac{\partial \overrightarrow{\mathbf{r}}}{\partial u} \times \frac{\partial \overrightarrow{\mathbf{r}}}{\partial v} d u d v$
Some common parametric nets are listed on pages 9.19 and 9.20.

10. Theorems of Gauss and Stokes; Potential Functions

Gauss' divergence theorem: $\oiint_{S} \overrightarrow{\mathbf{F}} \cdot \mathbf{d} \overrightarrow{\mathbf{S}}=\iiint_{V} \vec{\nabla} \cdot \overrightarrow{\mathbf{F}} d V$ on a simply-connected domain.
Gauss' law for the net flux through any smooth simple closed surface S, in the presence of a point charge q, is: $\quad \oiint_{S} \overrightarrow{\mathbf{E}} \cdot \mathbf{d} \overrightarrow{\mathbf{S}}=\left\{\begin{array}{cc}\frac{q}{\varepsilon} & \text { if } S \text { encloses } O \\ 0 & \text { otherwise }\end{array}\right.$

Stokes' theorem: $\quad \oint_{C} \overrightarrow{\mathbf{F}} \cdot \mathbf{d} \overrightarrow{\mathbf{r}}=\iint_{S} \vec{\nabla} \times \overrightarrow{\mathbf{F}} \cdot \hat{\mathbf{N}} d S=\iint_{S}(\operatorname{curl} \overrightarrow{\mathbf{F}}) \cdot \mathbf{d} \overrightarrow{\mathbf{S}}$
On a simply-connected domain Ω the following statements are either all true or all false:

- $\overrightarrow{\mathbf{F}}$ is conservative.
- $\overrightarrow{\mathbf{F}} \equiv \vec{\nabla} \phi$
- $\vec{\nabla} \times \overrightarrow{\mathbf{F}} \equiv \overrightarrow{\mathbf{0}}$
- $\int_{C} \overrightarrow{\mathbf{F}} \cdot \mathbf{d} \overrightarrow{\mathbf{r}}=\phi\left(P_{\text {end }}\right)-\phi\left(P_{\text {start }}\right) \quad$ - independent of the path between the two points.
- $\oint_{C} \overrightarrow{\mathbf{F}} \cdot \mathbf{d} \overrightarrow{\mathbf{r}}=0 \quad \forall C \subset \Omega$
ϕ is the potential function for \mathbf{F}, so that $\left[\begin{array}{lll}\frac{\partial \phi}{\partial x} & \frac{\partial \phi}{\partial y} & \frac{\partial \phi}{\partial z}\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{lll}F_{1} & F_{2} & F_{3}\end{array}\right]^{\mathrm{T}}$.

11. Major Classifications of Common PDEs

$$
A(x, y) \frac{\partial^{2} u}{\partial x^{2}}+B(x, y) \frac{\partial^{2} u}{\partial x \partial y}+C(x, y) \frac{\partial^{2} u}{\partial y^{2}}=f\left(x, y, u, \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}\right)
$$

$D=B^{2}-4 A C$
Hyperbolic, wherever (x, y) is such that $D>0$;
Parabolic, wherever (x, y) is such that $D=0$;
Elliptic, wherever (x, y) is such that $D<0$.

d'Alembert Solution

$$
A \frac{\partial^{2} u}{\partial x^{2}}+B \frac{\partial^{2} u}{\partial x \partial y}+C \frac{\partial^{2} u}{\partial y^{2}}=r(x, y)
$$

A.E.: $\quad A \lambda^{2}+B \lambda+C=0$
C.F.: $\quad u_{C}(x, y)=f\left(y+\lambda_{1} x\right)+g\left(y+\lambda_{2} x\right), \quad$ [except when $D=0$]
where

$$
\lambda_{1}=\frac{-B-\sqrt{D}}{2 A} \quad \text { and } \quad \lambda_{2}=\frac{-B+\sqrt{D}}{2 A} \quad \text { and } \quad D=B^{2}-4 A C
$$

When $D=0, \quad u_{C}(x, y)=f(y+\lambda x)+h(x, y) g(y+\lambda x)$,
where $h(x, y)$ is a linear function that is neither zero nor a multiple of $(y+\lambda x)$.
P.S.: \quad if RHS $=n^{\text {th }}$ order polynomial in x and y, then try an $(n+2)^{\text {th }}$ order polynomial.

12. The Wave Equation - Vibrating Finite String

$\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}} \quad$ for $0<x<L \quad$ and $\quad t>0 \quad$ with $\quad y(0, t)=y(L, t)=0$ for $t \geq 0$,
$y(x, 0)=f(x)$ for $0 \leq x \leq L \quad$ and $\left.\quad \frac{\partial y}{\partial t}\right|_{(x, 0)}=g(x) \quad$ for $0 \leq x \leq L$
Substitute $y(x, t)=X(x) T(t)$ into the PDE. ... leads, via Fourier series, to

$$
\begin{aligned}
y(x, t) & =\frac{2}{L} \sum_{n=1}^{\infty}\left(\int_{0}^{L} f(u) \sin \left(\frac{n \pi u}{L}\right) d u\right) \sin \left(\frac{n \pi x}{L}\right) \cos \left(\frac{n \pi c t}{L}\right) \\
& +\frac{2}{\pi c} \sum_{n=1}^{\infty} \frac{1}{n}\left(\int_{0}^{L} g(u) \sin \left(\frac{n \pi u}{L}\right) d u\right) \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{n \pi c t}{L}\right)
\end{aligned}
$$

The Heat Equation

If the temperature $u(x, t)$ in a bar satisfies $\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}$ together with the boundary conditions $u(0, t)=T_{1}$ and $u(L, t)=T_{2}$ and the initial condition $u(x, 0)=f(x)$, then
$u(x, t)=X(x) T(t) \ldots$ leads to $\quad u(x, t)=v(x, t)+\left(\frac{T_{2}-T_{1}}{L}\right) x+T_{1} \quad$ where
$v(x, t)=\frac{2}{L} \sum_{n=1}^{\infty}\left(\int_{0}^{L}\left(f(z)-\frac{T_{2}-T_{1}}{L} z-T_{1}\right) \sin \left(\frac{n \pi z}{L}\right) d z\right) \sin \left(\frac{n \pi x}{L}\right) \exp \left(-\frac{n^{2} \pi^{2} k t}{L^{2}}\right)$

[Space for Additional Notes]

