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3. Fourier Series

This short chapter offers a very brief review of [discrete] Fourier series.

The Fourier series of f (x) on the interval (-L, L) is

109 = 3+ &[aon( %]+ nan( )

n=1
where

L
a, =%j f(x)cos(nil_xjdx, (n=0,1,23,...)

-L
and

b, = %I_LLf(x)sin(nLLdex, (n=1,23,..)

The {a,, bn} are the Fourier coefficients of f (x).

Note that the cosine functions (and the function 1) are even, while the sine functions are
odd.

If f(x) iseven (f(—x) = +f(x) for all x), then b, =0 for all n, leaving a Fourier cosine
series (and perhaps a constant term) only for f (x).

If f(x) isodd (f (x) = —f (x) for all x), then a, = 0 for all n, leaving a Fourier sine
series only for f (x).
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Example 3.1
0 (-7<x<0) _ _ _
Expand f(x) = in a Fourier series.
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Therefore the Fourier series for f (x) is it
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Example 3.1 (Additional Notes — also see
"www.engr .mun.ca/~ggeorge/5432/demos/")
The first few partial sums in the Fourier series

o0 n
f(X) = % + Z[%cosnx + Esinnxj (—7z<x<+7z)

n=1 n
are
T
So = —
4
/4 2 .
S, = — + —cCosx + sinx
4 V4
T 2 . 1.
S, = — + —cosXx + sinx + —sin2x
4 V4 2
S; = Z 4 Ecosx + sinx + 1sin 2X + icosSx + 1sin3x
4 T 2 O 3
and so on.

The graphs of successive partial sums approach f (x) more closely, except in the vicinity

of any discontinuities, (where a systematic overshoot occurs, the Gibbs phenomenon).
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Example 3.2

Find the Fourier series expansion for the standard square wave,

f(x) = {—1 (-1<x<0)

+1 (0<x<+1)

L=1

The function is odd (f (-x) = —f (x) for all x).
Therefore a, =0 forall n. We will have a Fourier sine series only.

1 0 1
b, = %J‘ f (x)sinnzx dx :J. —sinnzx dx + I sinnzx dx
-1 -1 0
n (can use symmetry)
B {cosn;zx}0 . |:—COSﬂ7Z'X:|l B 2(1_(_1) )
nz 1 nz 0 nzx

= f(x) = %2(%% n;rxJ = %i(2kl_lsin(2k —l)iZ'X]

k=1

The graphs of the third and ninth partial sums (containing two and five non-zero terms
respectively) are displayed here, together with the exact form for f (x), with a periodic
extension beyond the interval (-1, +1) that is appropriate for the square wave.

T

y = S5(x)
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Example 3.2 (continued)
y = So(X)
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Convergence

At all points x = X, in (-L, L) where f (x) is continuous and is either differentiable or the
limits lim f'(x) and lim f'(x) both exist, the Fourier series converges to f (x).

X=Xy~ X—>X,"

At finite discontinuities, (where the limits lim f’(x) and lim f'(x) both exist), the

_ ) f(x—)+ f(x+)
Fourier series converges to > :
(using the abbreviations f(x,—) = lim f(x) and f(x,+) = lim f(x)).
X=Xy X=Xy
r’l‘i.

f (x) not continuous  continuous but  continuous and
at X = Xo not differentiable  differentiable

: ) f(x,—)+ f(x +
In all cases, the Fourier series at X = X, converges to ( = ) 5 (%, ) (the red dot).
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Half-Range Fourier Series

A Fourier series for f (x), valid on [0, L], may be constructed by extension of the domain
to [-L, L].

An odd extension leads to a Fourier sine series:
¥

y=fx)

where

An even extension leads to a Fourier cosine series:
&

y=+fl-x) y=f(x)

f\._/_‘.

-7 |:| i:-. X

o0
= ?O e Zan cos(nﬂxj

n=1

L
a, :%j f(x)cos[nil_xjdx, (n=0,1,23,...)

and there is automatic continuity of the Fourier cosine seriesatx =0and at x =+ L.

where
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Example 3.3

Find the Fourier sine series and the Fourier cosine series for f (x) =x on [0, 1].

f (x) = x happens to be an odd function of x for any domain centred on x =0. The odd

extension of f(x) tothe interval [-1, 1] is f(x) itself. D 7
Evaluating the Fourier sine coefficients, x N 5N HITX
1
b, = Ej xsin| 22X | dx , (n=123...) "'\\
1Jo 1 -1
1 Ecosm‘?‘x
) N
= b, =2 —icos(mxj + L 5 sin(nﬁxj ™ 1.
nz 1 (n7z') 1 0 5 5N 27T
0 (MY
2 n+1
= ——X —l
—x(-1)

Therefore the Fourier sine series for f (x) = x on [0, 1] (which is also the Fourier series
for f(x)=x on[-1,1])is

f(x) 22(_1)n+1 sin(nzx)

nz

or

2( . sin 2z X sin 3z X sindrx
f(x) = =|sinzx — + — + ...
T 2 3 4

This function happens to be continuous and differentiable at x =0, but is clearly
discontinuous at the endpoints of the interval (x = £1).

Fifth order partial sum of the Fourier sine series for f (x) =x on [0, 1]

o
1 -
0
- 0 il ¢
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Example 3.3 (continued)

The even extension of f (x) to the interval [-1, 1] is f(x) =] Xx]|.

Evaluating the Fourier cosine coefficients, D i
) 1 X Cos AT
a, = —j xcos(nﬁ jdx (n=1,2,3...) \‘.|.
1Jo 1 N
1 %simﬂﬂx
™
L -
™
= a, =2 Lsin(nﬂx) + > CoS(N7X) 0 t S
e (n7) 0 (n7TY
A" -y
()’
2 (! 1
and a, = IjonX = [x ]0 =1
Evaluating the first few terms,
—4 —4 -4
3.0:1,31:?, a2=O,a3:W, 3.4:0, a5=ﬁ, 6:0’
1 (n=0)
—4
or a, =1 —= n=13,5,...
R e )
0 (n=2,4,6,...)

Therefore the Fourier cosine series for f(x) = x on [0, 1] (which is also the Fourier series

for f(x)=|x| on[-1,1])is
4 i cos((2k-1 7Z'X)
z (2k —1)°

cos3zX  COS57X  COSTrX }
¥ n +o.

_.,
|
N |~

or

f(x) = % - iz(cowrx +

9 25 49

N
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Example 3.3 (continued)

Third order partial sum of the Fourier cosine series for f (x) =x on [0, 1]

Note how rapid the convergence is for the cosine series compared to the sine series.

S3(x) for cosine series and Ss(x) for sine series for f (x) =x on [0, 1]
Y

~
1..

=
= =
=

END OF CHAPTER 3




	3. Fourier Series
	Example 3.1
	Example 3.2
	Convergence
	Half-Range Fourier Series
	Example 3.3


