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3. Fourier Series     
 
This short chapter offers a very brief review of [discrete] Fourier series. 
 
 
The Fourier series of  f (x) on the interval (–L, L) is 
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The {an, bn} are the Fourier coefficients of f (x). 
 
Note that the cosine functions (and the function 1) are even, while the sine functions are 
odd.    
 
If  f (x)  is even (f (–x) =  + f (x)  for all x), then bn = 0  for all n, leaving a Fourier cosine 
series (and perhaps a constant term) only for  f (x). 
 
If  f (x)  is odd (f (–x) =  – f (x)  for all x), then an = 0  for all n, leaving a Fourier sine 
series only for  f (x). 
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Example 3.1   
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Therefore the Fourier series for  f (x) is  
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Example 3.1    (Additional Notes – also see  
   "www.engr.mun.ca/~ggeorge/5432/demos/") 
The first few partial sums in the Fourier series  
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and so on. 
 
The graphs of successive partial sums approach  f (x)  more closely, except in the vicinity 
of any discontinuities, (where a systematic overshoot occurs, the Gibbs phenomenon). 
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Example 3.2    
 
Find the Fourier series expansion for the standard square wave,  
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L = 1. 
 
The function is odd (f (–x) =  – f (x)  for all x). 
Therefore  an = 0  for all n.   We will have a Fourier sine series only. 
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   (can use symmetry) 
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The graphs of the third and ninth partial sums (containing two and five non-zero terms 
respectively) are displayed here, together with the exact form for  f (x), with a periodic 
extension beyond the interval (–1, +1) that is appropriate for the square wave. 
 

 
 

y  =  S3(x) 
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Example 3.2   (continued) 
 

y  =  S9(x) 
 

 
 
 
 
 
Convergence   
 
At all points x = xo in (–L, L) where  f (x)  is continuous and is either differentiable or the 
limits ( )
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At finite discontinuities, (where the limits ( )
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  f (x) not continuous      continuous but       continuous and 
        at x = xo               not differentiable      differentiable     

In all cases, the Fourier series at x = xo converges to ( ) ( )o

2
f x f xo− + +

 (the red dot). 
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Half-Range Fourier Series 
 
A Fourier series for  f (x), valid on [0, L], may be constructed by extension of the domain 
to [–L, L]. 
 
An odd extension leads to a Fourier sine series:  
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An even extension leads to a Fourier cosine series:  
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and there is automatic continuity of the Fourier cosine series at x = 0 and at x = ± L. 
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Example 3.3    
 
Find the Fourier sine series and the Fourier cosine series for  f (x) = x  on [0, 1]. 
 
 
f (x) = x  happens to be an odd function of x for any domain centred on x = 0.   The odd 
extension of  f (x)  to the interval  [–1, 1]  is  f (x)  itself. 
 
Evaluating the Fourier sine coefficients,  
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Therefore the Fourier sine series for  f (x) = x  on [0, 1] (which is also the Fourier series 
for  f (x) = x  on [–1, 1] ) is  
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This function happens to be continuous and differentiable at x = 0, but is clearly 
discontinuous at the endpoints of the interval (x = ±1). 
 

Fifth order partial sum of the Fourier sine series for  f (x) = x  on [0, 1] 
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Example 3.3   (continued) 
 
The even extension of  f (x)  to the interval  [–1, 1]  is  f (x) = | x |. 
   
Evaluating the Fourier cosine coefficients,  
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Evaluating the first few terms,  
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Therefore the Fourier cosine series for  f (x) = x  on [0, 1] (which is also the Fourier series 
for  f (x) = | x |  on [–1, 1] ) is  
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Example 3.3   (continued) 
 
 

Third order partial sum of the Fourier cosine series for  f (x) = x  on [0, 1] 

 
Note how rapid the convergence is for the cosine series compared to the sine series. 
 

S3(x) for cosine series and S5(x) for sine series for  f (x) = x  on [0, 1] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

END OF CHAPTER 3 
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