# ENGI 9420 Engineering Analysis Assignment 1 Questions 

2012 Fall

due in class 2012 September 17 Monday
[First order ODEs, Sections 1.01-1.05]
Note: In this assignment, do not use Laplace transform methods at all.

1. For the initial value problem

$$
\frac{d y}{d x}+2 y=2, \quad y(0)=4
$$

(a) Classify the ODE (as one or more of separable, exact, linear, or Bernoulli).
(b) Obtain the complete solution by two different methods.
(c) Verify that your solution does satisfy the initial value problem.
2. For the initial value problem

$$
\frac{d y}{d x}+2 y=2 y^{3}, \quad y(0)=4
$$

(a) Classify the ODE (as one or more of separable, exact, linear, or Bernoulli).
(b) Obtain the complete solution.
(c) Verify that your solution does satisfy the initial value problem.
(d) Find the complete solution when the initial condition is replaced by $y(0)=0$.
3. For the ordinary differential equation

$$
y d x+(2 x+3 y) d y=0
$$

(a) Show that the ODE is not exact.
(b) Find an integrating factor for this ODE.
(c) Hence find the general solution (in implicit form).
4. Find the complete solution to the initial value problem

$$
\frac{d y}{d x}+3 y=3 y^{2 / 3}, \quad y(0)=0
$$

5. A conical tank, of half-angle $30^{\circ}$, contains liquid as shown. The apex has been cut off to leave a circular hole of radius 1 centimetre, through which liquid drains out from the container. The "head" (or height) of liquid above the hole at any instant $t$ is $h(t)$. The tank has a radius at the top of $R$ and a height from the top to the hole of $H$. All distances are measured in centimetres.

The rate at which the volume $V(t)$ of liquid in the tank changes due to liquid draining at discharge speed $v(t)$
 through a hole of area $A$ is given by the differential equation

$$
\begin{equation*}
\frac{d V}{d t}=-k A v \tag{20}
\end{equation*}
$$

where $k$ is an experimentally determined constant, (dependent on viscosity and the geometry of the opening), between 0 and 1 . For this question, assume $k=0.7$.

In addition, Toricelli's law (equating the gain of kinetic energy of every point in the water to the loss of gravitational potential energy of that point) leads to

$$
v(t)=\sqrt{2 g h(t)}
$$

Find how long it takes ( $T$ ) for a full tank to drain completely, as a function of the truncated height $H$ of the cone.

Hence find the value of $T$ to the nearest second when $H=30 \mathrm{~cm}$.
Take $g=981 \mathrm{cms}^{-2}$.
6. A five metre long chain with a constant line density of $\rho \mathrm{kg} / \mathrm{m}$ is supported in a pile on a platform several metres above the floor of a warehouse. It is wound around a frictionless pulley at the edge of the platform, with one metre of chain already hanging down at time $t=0$, when the chain is released from rest. Let $x(t)$ represent the length of that part of the chain hanging down from the pulley at time $t$ and let $v(t)$ be the speed of that part of the chain at time $t$.
(a) Show that the ordinary differential equation governing the speed of the chain is

$$
\frac{d v}{d x}+\frac{1}{x} v=\frac{g}{v}, \quad(1 \leq x \leq 5)
$$

where $g \approx 9.81 \mathrm{~ms}^{-2}$ is the acceleration due to gravity and where all frictional forces are ignored.
(b) Determine the speed with which the trailing end of the chain leaves the pulley.

[^0]
[^0]:    (. Return to the index of assignments

