ENGI 9420 Engineering Analysis Assignment 4 Questions

2012 Fall

due in class on 2012 October 22 (Monday)
[Eigenvalues; stability analysis; Chapter 4]

1. For the matrix
[20]

$$
A=\left[\begin{array}{ll}
-9 & 3 \\
-8 & 1
\end{array}\right]
$$

(a) Find the eigenvalues.
(b) Find the unit eigenvectors associated with each eigenvalue.
(c) Construct the 2×2 matrix X whose columns are the unit eigenvectors found in part (b) and evaluate the product $\mathrm{X}^{-1} \mathrm{AX}$.
(d) Use part (a) to determine the nature and stability of the critical point of the linear system

$$
\frac{d x}{d t}+9 x=3 y, \quad \frac{d y}{d t}+8 x=y
$$

(e) Sketch the orbits near the critical point; and
(f) Find the general solution of the linear system.
2. In a system with two or more states, (for example, the energy levels of the electron shells in an atom), probabilities can be assigned for a transition from one state to another. The simplest example is a two-state model, with states 'A' and ' B '. In any time step, there is a probability a that an object in state A will stay in state A (and therefore the complementary probability $(1-a)$ that the object will move to state B). There is a probability b that an object in state B will stay in state B (and therefore the complementary probability $(1-b)$ that the object will move to state A). Both a and b are numbers strictly between 0 and 1 . These probabilities can be expressed in a transition matrix M (also known as a Markov matrix):

$$
\mathrm{M}=\begin{aligned}
& \text { to state } \mathrm{A} \\
& \text { to state } \mathrm{B}
\end{aligned}\left[\begin{array}{cc}
a & 1-b \\
1-a & b
\end{array}\right]
$$

Note how each column of M has entries that add up to 1 exactly, no matter what choices are made for a and b.
Let the state vector $\overrightarrow{\mathbf{x}}_{n}$ represent the proportion of objects that are in each state at time step n:

$$
\stackrel{\rightharpoonup}{\mathbf{x}}_{n}=\left[\begin{array}{l}
\alpha_{n} \\
\beta_{n}
\end{array}\right] \begin{aligned}
& \text { proportion in state } \mathrm{A} \text { at time } n \\
& \text { proportion in state } \mathrm{B} \text { at time } n
\end{aligned}
$$

Again, the entries in the column add up to 1: $\alpha_{n}+\beta_{n}=1$ ($\overrightarrow{\mathbf{x}}_{n}$ is a Markov vector).
2. (continued)

The proportion of objects in each state in the next time step is related to the present proportions by

$$
\stackrel{\mathbf{x}}{n+1}=\mathrm{M} \stackrel{\mathbf{x}}{n} \quad \Rightarrow\left[\begin{array}{c}
\alpha_{n+1} \\
\beta_{n+1}
\end{array}\right]=\left[\begin{array}{cc}
a & 1-b \\
1-a & b
\end{array}\right] \cdot\left[\begin{array}{c}
\alpha_{n} \\
\beta_{n}
\end{array}\right]
$$

As the system evolves through a long sequence of time steps, the system settles down to a steady state

$$
\stackrel{\rightharpoonup}{\mathbf{x}}=\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right] \text { such that } \mathrm{M} \stackrel{\rightharpoonup}{\mathbf{x}}=\overrightarrow{\mathbf{x}} \Rightarrow\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]=\left[\begin{array}{cc}
a & 1-b \\
1-a & b
\end{array}\right] \cdot\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]
$$

(a) Show that one of the eigenvalues of the transition matrix M is $\lambda=1$, no matter what the values of the transition probabilities a and b may be.
(b) Show that there is exactly one eigenvector of M for the eigenvalue $\lambda=1$, whose entries add up to 1 (a Markov eigenvector) and express it in terms of a and b.
(c) Show that there is no Markov eigenvector of M for the other eigenvalue.
(d) In the particular case where an object in state A has a 40% chance of staying in state A, but an object in state B has an 80% chance of staying in state B, find the steady-state proportions of objects in each state.
3. For the non-linear system

$$
\frac{d x}{d t}=3 x+y+7, \quad \frac{d y}{d t}=2 x^{2}+3 y+3
$$

i. determine the critical point(s);
ii. find the linear system associated with each critical point;
iii. determine the nature and stability of the critical point(s);
iv. sketch the orbits near the critical point(s); and
v. sketch the orbits on a diagram that includes all critical point(s).
4. For the non-linear system

$$
\frac{d^{2} x}{d t^{2}}+x-\frac{x^{3}}{3}=0
$$

i. determine the critical point(s);
ii. find the linear system associated with each critical point;
iii. determine the nature and stability of the critical point(s);
iv. sketch the orbits near the critical point(s); and
v. sketch the orbits on a diagram that includes all critical point(s).
5. A mutual force of attraction is exerted between parallel current carrying wires.

The infinite wire carries current I. The finite wire of length L carries current i in the same direction and is restrained by a spring. According to the Biot-Savart law, the mutual force of attraction is

$$
\frac{2 I i L}{(\text { separation })}=\frac{2 I i L}{a-x}
$$

where $x=0$ is the position at which the spring force is zero. The mass of the finite wire is m and the restoring constant of the spring is k. The equation of motion of the restrained wire is

$$
\ddot{x}+\frac{k}{m}\left(x-\frac{b}{a-x}\right)=0 \quad \text { where } \quad b=\frac{2 I i L}{k}
$$

For each of the cases $b<a^{2} / 4, b=a^{2} / 4$ and $b>a^{2} / 4$,
(a) Locate and classify the singularities (using $d x / d t=y$).
(b) Sketch the phase portrait.
(c) Where it exists, find the equation of the separatrix.
[The separatrix is the orbit that separates closed orbits from open orbits. It usually passes through at least one singularity.]

