ENGI 9420 Engineering Analysis Assignment 5 Questions

2012 Fall

due in class on 2012 November 05 (Monday)
[Stability analysis, gradient operators; Chapters 4 and 5]

1. Use Liénard's theorem to determine the stability of the solutions of the equation

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}+\left(x^{2}-\frac{1}{3}\right) \frac{d x}{d t}+x^{5}=0 \tag{10}
\end{equation*}
$$

[Note that the associated linear system has a zero eigenvalue, which is an indeterminate form.]
2. Find all limit cycles of the system of differential equations

$$
\frac{d x}{d t}=x-x^{3}-x y^{2}, \quad \frac{d y}{d t}=y-y^{3}-y x^{2}
$$

Hints: Compute $\frac{d}{d t}\left(x^{2}+y^{2}\right)$; a limit cycle must be the orbit of a periodic solution that passes through no critical points of the system and encloses a critical point.]
3. Use the Poincaré-Bendixon theorem to prove the existence of a non-trivial periodic solution of the differential equation

$$
\begin{equation*}
\frac{d^{2} z}{d t^{2}}+\left(z^{2}-1\right) \frac{d z}{d t}+2\left(\frac{d z}{d t}\right)^{3}+z=0 \tag{10}
\end{equation*}
$$

4. Show that the system of differential equations

$$
\frac{d x}{d t}=x^{3}-x y^{2}-x^{2}+y, \quad \frac{d y}{d t}=2 x^{2} y+y^{3}+2 x y+y+1
$$

has no non-trivial periodic solution.
5. Show that the system of differential equations

$$
\frac{d x}{d t}=5 x-x y^{2}-y^{3}, \quad \frac{d y}{d t}=4 y-x^{2} y+x^{3}
$$

has no non-trivial periodic solution entirely inside the circle $x^{2}+y^{2}=9$.
6. For the vector field $\overrightarrow{\mathbf{F}}=e^{-k r} \overrightarrow{\mathbf{r}}$, where $\overrightarrow{\mathbf{r}}=[x y z]^{\mathrm{T}}$ and k is a positive constant,
(a) Find the curl of $\stackrel{\rightharpoonup}{\mathbf{F}}$ in Cartesian coordinates.
(b) Find the curl of $\overline{\mathbf{F}}$ while remaining in spherical polar coordinates throughout.
(c) Work in Cartesian coordinates to find the divergence of $\overrightarrow{\mathbf{F}}$ as a function of r.
(d) Work in spherical polar coordinates to find the divergence of $\overline{\mathbf{F}}$ as a function of r.
(e) find where $\operatorname{div} \overrightarrow{\mathbf{F}}=0$ and classify this surface.
(f) find where the magnitude F of the vector field $\overrightarrow{\mathbf{F}}$ attains its maximum value.
(g) show that $V(r)=\frac{-(1+k r)}{k^{2}} e^{-k r}$ is a potential function for the vector field $\stackrel{\rightharpoonup}{\mathbf{F}}$.
(h) find the work done to move a particle from the origin to a place where $\operatorname{div} \overline{\mathbf{F}}=0$.
[Note that work done is $\int_{C} \stackrel{\rightharpoonup}{\mathbf{F}} \cdot \mathbf{d} \mathbf{r}=\int_{t_{0}}^{t_{1}} \stackrel{\rightharpoonup}{\mathbf{F}} \cdot \frac{d \stackrel{\mathbf{r}}{\mathbf{r}}}{d t} d t$.]
7. A cylindrical parabolic coordinate system (u, v, w) is defined by

$$
x=u v, \quad y=\frac{u^{2}-v^{2}}{2}, \quad z=w
$$

(a) Find the Jacobian $\frac{\partial(x, y, z)}{\partial(u, v, w)}=\mathrm{abs}\left(\operatorname{det}\left(\begin{array}{lll}\frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} & \frac{\partial z}{\partial u} \\ \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial z}{\partial v} \\ \frac{\partial x}{\partial w} & \frac{\partial y}{\partial w} & \frac{\partial z}{\partial w}\end{array}\right)\right)$
that allows the conversion of a volume differential $d V$ from Cartesian coordinates to these cylindrical polar coordinates.
(b) Find the scale factors h_{u}, h_{v}, h_{w} for this cylindrical parabolic coordinate system.
(c) Let the unit vectors of the cylindrical parabolic coordinate system be $\hat{\mathbf{u}}, \hat{\mathbf{v}}, \hat{\mathbf{w}}$.

Find an expression for the gradient in this cylindrical parabolic coordinate system.
(d) Find an expression for the Laplacian $\nabla^{2} f$ in this cylindrical parabolic coordinate system.
(e) Sketch on the same $x-y$ plane any three members of each of the two families
of coordinate curves $u=$ constant and $v=$ constant.
8. The location of a particle at any time $t>0$ is given in cylindrical polar coordinates by

$$
\rho(t)=2-e^{-t}, \quad \phi(t)=t, \quad z(t)=e^{-t}
$$

Find the acceleration $\mathbf{\mathbf { a }}(t)$ in cylindrical polar coordinates.
9. The location of a particle at any time $t>0$ is given in spherical polar coordinates by

$$
r(t)=2, \quad \theta(t)=\frac{\pi}{6}, \quad \phi(t)=t
$$

(a) Find the velocity $\overrightarrow{\mathbf{v}}(t)$ and speed $v(t)$ in spherical polar coordinates.
(b) Find the acceleration $\overrightarrow{\mathbf{a}}(t)$ in spherical polar coordinates.
(c) Describe the motion of the particle (what sort of path does it follow?)

