ENGI 9420 Engineering Analysis Additional Exercises

2012 Fall

[not to be handed in]
[Partial differential equations; Chapter 8]

1 The function $u(x, y)$ satisfies $\frac{\partial^{2} u}{\partial x^{2}}-3 \frac{\partial^{2} u}{\partial x \partial y}+2 \frac{\partial^{2} u}{\partial y^{2}}=0$, subject to the boundary conditions $u(x, 0)=\left.\frac{\partial}{\partial y} u(x, y)\right|_{y=0}=-1$. Classify the partial differential equation (hyperbolic, parabolic or elliptic) and find the complete solution $u(x, y)$.
2. Classify the partial differential equation $4 \frac{\partial^{2} u}{\partial x^{2}}+12 \frac{\partial^{2} u}{\partial x \partial y}+9 \frac{\partial^{2} u}{\partial y^{2}}=0$ and find its general solution.
3. A disturbance on a very long string causes a vertical displacement $y(x, t)$ at a distance x from the origin at time t. The string is released from rest at time $t=0$ with initial displacement $f(x)=\frac{1}{1+8 x^{2}}$.
(a) Find the subsequent motion of this string $y(x, t)$.
(b) Sketch or plot the wave form at time $t=0$ and at any two subsequent times.
4. Classify the partial differential equation $\nabla^{2} u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=12 x$ and find the complete solution given the additional information

$$
u(0, y)=0,\left.\quad\left(\frac{\partial}{\partial x} u(x, y)\right)\right|_{x=0}=3 y^{2}
$$

5. Classify the partial differential equation $\frac{\partial^{2} u}{\partial^{2} x}-7 \frac{\partial^{2} u}{\partial x \partial y}+10 \frac{\partial^{2} u}{\partial^{2} y}=-3$ and find the complete solution, given the additional information
$u(x, 0)=2 x^{2}+4, \quad u_{y}(x, 0)=x$
6. Classify the partial differential equation $\frac{\partial u}{\partial t}=4 \frac{\partial^{2} u}{\partial x^{2}}$ and find its complete solution on the interval $0 \leq x \leq 100$ for all positive time t, given the additional information $u(0, t)=0$ and $u(100, t)=100 \quad \forall t \geq 0$
and $\quad u(x, 0)=2 x-\left(\frac{x}{10}\right)^{2} \quad \forall x \in[0,100]$
Also write down the steady state solution.
7. An ideal perfectly elastic string of length 1 m is fixed at both ends (at $x=0$ and at $x=1$). The string is displaced into the form $y(x, 0)=f(x)=x^{2}(1-x)^{2}$ and is released from rest. Waves travel without friction along the string at a speed of $2 \mathrm{~m} / \mathrm{s}$. Find the displacement $y(x, t)$ at all locations on the string $(0<x<1)$ and at all subsequent times ($t>0$).

Write down the complete Fourier series solution and the first two non-zero terms.

