
  

  

ENGI 9420 Engineering Analysis 
Additional Exercises 

2012 Fall 
[not to be handed in] 

[Partial differential equations; Chapter 8] 
 
 

1   The function  ( ),u x y   satisfies  
2 2 2
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.   Classify the partial differential 

equation (hyperbolic, parabolic or elliptic) and find the complete solution  ( ),u x y .  
 
 

 

2. Classify the partial differential equation  
2 2 2
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and find its general solution. 
 
 

 
3. A disturbance on a very long string causes a vertical displacement  ( ),y x t    

at a distance  x  from the origin at time  t.   The string is released from rest at time  t = 0 

with initial displacement  ( ) 2
1

1 8
f x

x
=

+
.  

    (a) Find the subsequent motion of this string   ( ),y x t .  
    (b) Sketch or plot the wave form at time  t = 0  and at any two subsequent times. 
  

 
 

4. Classify the partial differential equation  
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and find the complete solution given the additional information  
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5. Classify the partial differential equation   
2 2 2
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and find the complete solution, given the additional information 
( ) ( )2,0 2 4 , ,0yu x x u x x= + =  

 
 

6. Classify the partial differential equation  
2
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  and find its complete solution on 

the interval 0 100x≤ ≤  for all positive time t, given the additional information 
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Also write down the steady state solution. 
 
 

 
7. An ideal perfectly elastic string of length 1 m is fixed at both ends (at x = 0 and at x = 1).   

The string is displaced into the form  ( ) ( ) ( )22,0 1y x f x x x= = −   and is released from 
rest.   Waves travel without friction along the string at a speed of 2 m/s.   Find the 
displacement  y(x, t) at all locations on the string (0 < x < 1) and at all subsequent times 
(t > 0). 
 
Write down the complete Fourier series solution and the first two non-zero terms. 

 
 

 
 
   Return to the index of assignments   On to the solutions    
 

 


