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1. For the partial differential equation 
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    (a)  Classify the partial differential equation as one of elliptic, parabolic or hyperbolic.  [2] 
    (b)  Find the general solution.  [7] 
    (c)  Find the complete solution, given the additional information  [11] 

( ) ( ) 20, 0 , 0,xu y u y y= =  
 
 
 
2  (a) Show that the only intersection of the curves   

2xy e−=   and  y x=   must occur  [7] 
 for some value of  x  in the interval  0 1x< < . 
    (b) Use Newton’s method with a reasonable initial value  0x   to estimate, correct to  [8] 

five decimal places, the value of  x  at which  ( ) 0f x = , where  

( ) 2xf x x e−= −  
 
 
 
3. The non-linear second order ordinary differential equation  
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 can be represented by the system of first order ordinary differential equations 
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    (a) Find the locations of both critical points. [4] 
    (b) For each critical point, identify its nature (node, centre, focus or saddle point) and  [7] 
 stability. 
    (c) Find the equations of the asymptotes for the linear approximation at any node or  [7]  
 saddle point. 
 [Note:  the general solution is not required.] 
    (d) Sketch the phase portrait in the [linear] neighbourhood of each critical point. [6] 
    (e) Sketch the phase portrait for the non-linear system, including both critical points. [6] 
BONUS QUESTION  
    (f) Find the equation of the separatrix (the curve that separates trajectories that  [+5] 
 terminate in a stable critical point from trajectories that recede to infinity). 
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4. A perfectly elastic frictionless string is fixed at  x = 0 and  x = 2.   It is stretched in  [15] 
a triangular configuration  
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as illustrated and is released from rest. 
The speed of waves on the string is  c = 6.    

 
Find a Fourier series expression for the subsequent displacement  ( ),y x t   of the  
string.   You may quote 
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5. Find the path  ( )y f x=   between the points ( )0,1  and ( )31, 2e  that provides an  [20] 
 extremum for the value of the integral 
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