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2. Matrix Algebra 
 
A linear system of  m  equations in  n unknowns,  

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

n n

n n

m m mn n m

a x a x a x b

a x a x a x b

a x a x a x b

+ + + =

+ + + =

+ + + =









 

(where the  ija  and  ib  are constants) 

 
can be written more concisely in matrix form, as  

A =x b


  
where the (m × n) coefficient matrix [m rows and n columns] is  

11 12 1

21 22 2
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A

n
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a a a

 
 
 =
 
 
  





   



 

 
and the column vectors (also (n × 1) and (m × 1) matrices respectively) are 

1 1

2 2and

n m

x b
x b

x b

   
   
   = =
   
   
      

x b




 

 

 
Matrix operations can render the solution of a linear system much more efficient. 
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2.01 Gaussian Elimination    
 
Example 2.01.1    
 
In quantum mechanics, the Planck length PL  is defined in terms of three fundamental 
constants: 
- the universal constant of gravitation,  G = 6.67 × 10–11 N m2 kg–2    
- Planck’s constant,     h = 6.62 × 10–34 J s   
- the speed of light in a vacuum,   c = 2.998 × 108 m s–1    
The Planck length is therefore  

P
yx zL k G h c=  

where  k  is a dimensionless constant and  x, y, z  are constants to be determined. 
Also note that  1 N = 1 kg m s–2  and  1 J = 1 Nm = 1 kg m2 s–2 .   
Use dimensional analysis to find the values of  x, y and z . 
 
    
Let  PL     denote the dimensions of PL . 

Then [ ] [ ] [ ] [ ] ( ) ( ) ( )1 3 2 2 1 1kg m s kg m s m sP

x y zx y zyx zL k G h c G h c − − − − = = =   

[ ]3 2 2 1kg m s mP
x y x y z x y z L− + + + − − −= = =  

This generates a linear system of three simultaneous equations for the three unknowns,  
 kg:  –x +  y         =  0 
 m:  3x + 2y + z  =  1 
 s: –2x –  y – z   =  0 
This can be re-written as the matrix equation   Ax = b , where  

1 1 0 0
A 3 2 1 , , 1

2 1 1 0

x
y
z

−     
     = = =     
     − − −     

x b


  

Use Gaussian elimination (a sequence of row operations) on the augmented matrix  
[ A | b ] : 

1 1 0 0
A| 3 2 1 1

2 1 1 0

− 
   =   
 − − − 

b


 

 
Multiply Row 1 by (–1): 

1
1 1 0 0

1
3 2 1 1
2 1 1 0

R
 −

×−  
→  

 − − − 

 

 
There is now a “leading one” in the top left corner. 
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Example 2.01.1   (continued) 
 
From Row 2 subtract (3 × Row 1) and 
to Row 3 add (2 × Row 1): 

2 1

3 1

1 1 0 0
3

0 5 1 1
2

0 3 1 0

R R
R R

 −
−  

→  +  − − 

 

 
All entries below the first leading one are now zero. 
The next leading entry is a ‘5’.   Scale it down to a ‘1’. 
Multiply Row 2 by (1/5): 

2

1 1
5 51

5

1 1 0 0

0 1

0 3 1 0
R

− 
 

→  ×  − − 

 

 
Clear the entry below the new leading one. 
To Row 3 add (3 × Row 2): 

3 2

1 1
5 5

32
5 5

1 1 0 0

0 1
3

0 0
R R

 −
 

→  +  
 −

 

 
The next leading entry is a ‘–2/5’.   Scale it down to a ‘1’. 
Multiply Row 3 by (–5/2): 

3

1 1
5 5 5
2 3

2

1 1 0 0
0 1

0 0 1
R

 − 
 →

×−  
 − 

 

 
This matrix is in row echelon form (the first non-zero entry in every row is a one and all 
entries below every leading one in its column are zero).   It is also upper triangular (all 
entries below the leading diagonal are zero). 
The solution may be read from the echelon form, using back substitution: 
 

( )3 3 51 1 1 1 1 1
5 5 5 5 52 2 2 2

3
2

1 1 0 0
0 1

0 0 1

x
y z y y
z

  −  
     = ⇒ = − ⇒ + × − = ⇒ = × =    
     −    

 

1 1
2 20x x⇒ − = ⇒ =  
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Example 2.01.1   (continued) 
 
An alternative strategy is to complete the reduction of the augmented matrix to reduced 
row echelon form (the first non-zero entry in every row is a one and all other entries are 
zero in a column that contains a leading one).    
 
From Row 2 subtract (1/5 × Row 3): 

2 3

1
1 2
5 3

2

1 1 0 0
0 1 0

0 0 1
R R

 −
 

→  −  − 

 

 
To Row 1 add Row 2: 

1 2

1
2
1
2
3
2

1 0 0

0 1 0

0 0 1

R R
 
 +

→  
 − 

 

 
From this reduced row echelon matrix, the values of  x, y and z may be read directly: 

1
2

31 1
2 2 2
3
2

1 0 0
0 1 0 ,
0 0 1

x
y x y z
z

    
    → = ⇒ = = = −    
     −     

 

 
When a square linear system (same number of equations as unknowns) has a unique 
solution, the reduced row echelon form of the coefficient matrix is the identity matrix. 
 
Therefore the functional form of the Planck length is  
 

3P
Gh k GhL k
c c c

= =  

 
Dimensional analysis alone cannot determine the value of the constant k. 
[Methods in quantum mechanics, beyond the scope of this course, can establish that the 

constant is  1
2

k
π

= , so that  PL  = 1.616 20 × 10−35 m.] 
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Example 2.01.2    
 
Find the solution (x, y, z, t) to the system of equations  
 
 x + y             =    5 
       y + z       =    7 
     2y + z + t  =  10 
 
 
This is an under-determined system of equations (fewer equations than unknowns). 
A unique solution is not possible.   There will be either infinitely many solutions or no 
solution at all. 
 
Reduce the augmented matrix to reduced row echelon form: 
 

 

1 1 0 0 5

0 1 1 0 7
0 2 1 1 10

 
 
 
 
  

 

A leading one exists in the top left entry, with zero elsewhere in the first column. 
A leading one exists in the second row.   Clear the other entries in the second column. 
From Row 3 subtract (2 × Row 2) and  
from Row 1 subtract Row 2: 

1 2

3 2

1 0 1 0 2

0 1 1 0 7
2

0 0 1 1 4

R R
R R

− − 
−  

→  −  − − 

 

 
Rescale the leading entry in Row 3 to a ‘1’. 
Multiply row 3 by (–1): 

3

1 0 1 0 2
0 1 1 0 7

1
0 0 1 1 4

R

 − −
 

→  ×−  − 

 

 
Clear the other entries in the third column. 
From Row 2 subtract Row 3 and  
to Row 1 add Row 3: 

1 3

2 3

1 0 0 1 2

0 1 0 1 3

0 0 1 1 4

R R
R R

 −
 +

→  
−  

−  

 

The leading ones are identified in this row reduced echelon form. 
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Example 2.01.2   (continued) 
 

 

1 0 0 1 2
0 1 0 1 3

40 0 1 1

x
y
z
t

  −        =        −      

 

 
The fourth column lacks a leading one.   This means that the fourth variable, t, is a free 
parameter, in terms of which the other three variables may be expressed.   We therefore 
have a one-parameter family of solutions,  
 x –  t  = 2 ,   y +  t  = 3 ,   z –  t = 4  
  
⇒ x = 2 + t ,   y = 3 –  t ,   z = 4 + t  
or 
 (x, y, z, t)  =  (2, 3, 4, 0)  +  (1, –1, 1, 1) t  
where  t  is free to be any real number. 
 
 
 
 
The rank of a matrix is the number of leading ones in its echelon form. 
 
If  rank (A)  <  rank [A | b] , then the linear system is inconsistent and has no solution. 
 
If  rank (A)  =  rank [A | b]  =  n (the number of columns in  A), then the system has a 
unique solution for any such vector b .  
 
If  rank (A)  =  rank [A | b]  <  n , then the system has infinitely many solutions, with a 
number of parameters   =  (n  –  rank (A) )  =  (# columns in  Ar  with no leading one). 
 
Example 2.01.3   
 
Read the solution set  (x1, x2,  ... , xn)  from the following reduced echelon forms. 
(a)  

1 0 2 1 1

0 1 1 0 2
0 0 0 0 0

 −
 
 
 
  

  rank (A)  =  rank [A | b]  =  2 ,   n = 4 

 
 
Two-parameter family of solutions:   
 ( ) ( ) ( ) ( )1 2 3 4 3 4, , , 1, 2, 0, 0 2, 1,1, 0 1, 0, 0,1x x x x x x= + − + −  
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Example 2.01.3 
 
(b) 

1 0 2 1 1

0 1 1 0 2

0 0 0 0 1

 −
 
 
 
  

  rank (A)  <  rank [A | b]    ⇒   no solution 

 
 
 
 
 
(c) 

1 0 0

0 1 0

0 0 1
0 0 0 0
0 0 0 0

a

b

c

 
 
 
 
 
 
 
  

  rank (A)  =  rank [A | b]  =  n  =  3     ⇒   unique solution 

 
This is an over-determined system of five equations in three unknowns, but two of the 
five equations are superfluous and can be expressed in terms of the other three equations.   
In this case a unique solution exists regardless of the values of the numbers a, b, c.  
 
The solution is   
 ( ) ( )1 2 3, , , ,x x x a b c=  
 
 
Note that software exists to eliminate the tedious arithmetic of the row operations. 
Various procedures exist in Maple and Matlab. 
 
A custom program, available on the course web site at  
"www.engr.mun.ca/~ggeorge/9420/demos/", allows the user to enter the 
coefficients of a linear system as rational numbers, allows the user to perform row 
operations (but will not suggest the appropriate operation to use) and carries out the 
arithmetic of the chosen row operation automatically. 
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2.02 Summary of Matrix Algebra 
 
Some rules of matrix algebra are summarized here. 
 
The dimensions of a matrix are (# rows  ×  #columns)   [in that order]. 
 
Addition and subtraction are defined only for matrices of the same dimensions as each 
other.   The sum of two matrices is found by adding the corresponding entries.  
 
Example 2.02.1   
 

 
1 2 0 1 2 1 0 4 1
0 3 2 0 1 0 0 4 2

−     
+ =     

     
 

 
 
Scalar multiplication: 
The product  cA  of matrix  A  with scalar  c  is obtained by multiplying every element in 
the matrix by  c.  
 
Example 2.02.2   
 

 
1 2 0 5 10 0

5
0 3 2 0 15 10
   

=   
   

 

 
 
Matrix multiplication: 
The product  C = AB  of a (p × q) matrix A with an (r × s) matrix B  is defined if and 
only if q = r.   The product  C  has dimensions (p × s) and entries  

1

q

i j ik k j
k

c a b
=

= ∑  

or   ijc  =  (ith row of A) • (jth column of B)    [usual Cartesian dot product] 

 
Example 2.02.3   
 

 
( )
( )

3
1 3 2 2 0 11 2 0 7

AB 2
0 3 3 2 2 10 3 2 8

1

 
× + × + ×     = = =      × + × + ×      

 

 
Note that matrix multiplication is, in general, not commutative:   BA  ≠ AB. 
In this example, BA is not even defined! 
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The transpose of the (m × n) matrix  A = { ija  }  is the (n × m) matrix  AT = { jia }. 

The transpose of the product  AB  is  (AB)T  =  BTAT . 
 
Example 2.02.4   
 

 [ ]T T

3 1 0
1 2 0

A , B 2 A 2 3 , B 3 2 1
0 3 2

1 0 2

   
     = = ⇒ = =             

 

[ ] [ ] ( )TT T

1 0
B A 3 2 1 2 3 7 8 AB

0 2

 
 ⇒ = = = 
  

 

 
 
A matrix is symmetric if and only if AT =  A  (which requires  ji ija a=   for all (i, j) ). 
A matrix is skew-symmetric if and only if AT =  –A . 
 
A square matrix has equal numbers of rows and columns. 
 
If a matrix is symmetric or skew-symmetric, then it must be a square matrix. 
 
If a matrix is skew-symmetric, then it must be a square matrix whose leading diagonal 
elements are all zero. 
 
Example 2.02.5   
 

1 5 0 2
5 2 1 7

A
0 1 3 1
2 7 1 4

− 
 − =
 −
 − 

 is symmetric. 

 
0 5 0 2
5 0 1 7

B
0 1 0 1
2 7 1 0

− 
 − − =
 −
 − 

 is skew-symmetric. 

 
Any square matrix may be written as the sum of a symmetric matrix and a skew-
symmetric matrix. 
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A square matrix is upper triangular if all entries below the leading diagonal are zero. 
A square matrix is lower triangular if all entries above the leading diagonal are zero. 
A square matrix that is both upper and lower triangular is diagonal. 
 
Example 2.02.6   
 

1
5

1 1 0
A 0 2

0 0 3

 −
 =  
  

 is upper triangular. 

 

T

1
5

1 0 0
A 1 2 0

0 3

 
 = − 
  

 is lower triangular. 

 
1 0 0

B 0 2 0
0 0 3

 
 =  
  

 is diagonal. 

 
The trace of a diagonal matrix is the sum of its elements.   ⇒   trace(B) = 6. 
 
The diagonal matrix whose diagonal entries are all one is the identity matrix  I. 
Let  In  represent the (n × n) identity matrix.   
Im A  =  A In  =  A   for all (m × n) matrices A. 
 
If it exists, the inverse A–1 of a square matrix A is such that 

A–1A  =  AA–1  =  I 
If the inverse A–1 exists, then A–1 is unique and  A  is invertible. 
If the inverse A–1 does not exist, then  A  is singular. 
 
 
Important distinctions between matrix algebra and scalar algebra:  
 
ab  =  ba   for all scalars a, b;   but 
AB  =  BA  is true only for some special choices of matrices  A, B. 
 
ab = 0   ⇒   a = 0 and/or b = 0 ,   but    
AB = 0  can happen when neither A nor B is the zero matrix. 
 
Example 2.02.7   

1 1 1 1 0 0
A , B AB O

1 1 1 1 0 0
−     

= = ⇒ = =     −     
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2.03 Determinants and Inverse Matrices     
 
The determinant of the trivial 1 × 1 matrix is just its sole entry: 
 det [ a ]  =  a . 
 
The determinant of a 2 × 2 matrix  A  is 

 ( )det A A
a b

ad bc
c d

= = = −  

 
For higher order (n × n) matrices A = { ija }, the determinant can be evaluated as follows: 

The minor Mij  of element ija  is the determinant of order (n – 1) formed from matrix A 

by deleting the row and column through the element ija . 

The cofactor Cij  of element ija  is found from  ( )C 1 Mi j
ij ij

+= −   

The determinant of A is the sum, along any one row or down any one column, of the 
product of each element with its cofactor: 

 ( ) ( )
1

det any one of 1, 2, ,
j

n
i j i jA a C i n

=
= =∑   

or 

 ( ) ( )
1

det any one of 1, 2, ,
i

n
i j i jA a C j n

=
= =∑   

If one row or column has more zero entries than the others, then one usually chooses to 
expand along that row or column. 
 
The determinant of a triangular matrix is just the product of its diagonal entries. 
det ( I ) = 1 
 
Example 2.03.1    
 
Evaluate the vector (cross) product of the vectors  ˆ ˆ ˆ2 3= + +a i j k   and   ˆ ˆ ˆ2 4 3= + +b i j k



. 
 
 
Expanding along the top row,  
 

ˆ ˆ ˆ
2 3 1 3 1 2ˆ ˆ ˆ1 2 3
4 3 2 3 2 4

2 4 3
= = + − +

i j k
a b i j k


×  

( ) ( ) ( )ˆ ˆ ˆ2 3 4 3 1 3 2 3 1 4 2 2= + × − × − × − × + × − ×i j k  
ˆ ˆ6 3∴ = − +a b i j



×  
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det(AB)  =  det(BA)  =  det(A) det(B) 
 

det(AT)  =  det(A) 
 
det (A) = 0   ⇒   A  is singular. 
 

( ) ( )
( )

1 adj A
det A 0 A

det A
−≠ ⇒ =  

where adj(A) is the adjoint matrix of A, which is the transpose of the matrix of cofactors 
of A.   For a (2×2) matrix, the formula for the inverse follows quickly: 
 

( )1 1A A
a b d b

ad bc
c d c aad bc

− −   
= ⇒ = ≠   −−   

 

 
Example 2.03.2   
 

12 1 4 11A A
3 4 3 25

− −   
= ⇒ =   −   

 

 
 
For higher order matrices, this adjoint/determinant method of obtaining the inverse 
matrix becomes very tedious and time-consuming.   A much faster method of finding the 
inverse involves Gaussian elimination to transform the augmented matrix [A | I] into the 
augmented matrix in reduced echelon form [I | A-1]. 
 
Example 2.03.3   
 

Find the inverse of the matrix 
1 1 0

A 3 2 1
2 1 1

− 
 =  
 − − − 

. 

 
 

[ ]
1 1 0 1 0 0

A|I 3 2 1 0 1 0
2 1 1 0 0 1

− 
 =  
 − − − 

 

Multiply Row 1 by (–1): 

1
1 1 0 1 0 0

1
3 2 1 0 1 0
2 1 1 0 0 1

R
 − −

×−  
→  

 − − − 
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Example 2.03.3   (continued) 
 
From Row 2 subtract (3 × Row 1) and 
to Row 3 add (2 × Row 1): 

2 1

3 1

1 1 0 1 0 0
3

0 5 1 3 1 0
2

0 3 1 2 0 1

R R
R R

 − −
−  

→  +  − − − 

 

 
All entries below the first leading one are now zero. 
The next leading entry is a ‘5’.   Scale it down to a ‘1’. 
Multiply Row 2 by (1/5): 

2
1
5 31 1

5 5 5

1 1 0 1 0 0

0 1 0

0 3 1 2 0 1

R
− − 

×  
→  

 − − − 

 

 
Clear the entry below the new leading one. 
To Row 3 add (3 × Row 2): 

3 2

31 1
5 5 5

32 1
5 5 5

1 1 0 1 0 0

0 1 0
3

0 0 1
R R

 − −
 

→  +  
 − −

 

 
The next leading entry is a ‘–2/5’.   Scale it down to a ‘1’. 
Multiply Row 3 by (–5/2): 

3

31 1
5 5 5 5
2 3 51

2 2 2

1 1 0 1 0 0
0 1 0

0 0 1
R

 − − 
 →

×−  
  − −

 

 
From Row 2 subtract (1/5 × Row 3): 

2 3
1
5 1 1 1

2 2 2
3 51

2 2 2

1 1 0 1 0 0
0 1 0

0 0 1

R R
 − − −
 →
 
  − −

 

 
To Row 1 add Row 2: 

1 11 2

1 1 1
2 2 2
1 1 1
2 2 2

3 51
2 2 2

1 0 0 1 1 1
1I|A 0 1 0 A 1 1 1
2

1 3 50 0 1

R R − −

 − − 
 +   → = ⇒ =    
   − −  − −
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Example 2.03.3   (continued) 
 
As a check on the answer,  
    

1

1 1 1 1 1 0 2 0 0
1 1A A 1 1 1 3 2 1 0 2 0 I
2 2

1 3 5 2 1 1 0 0 2

−

− −     
     = = =     
     − − − − −     

 

 
Determinants may be evaluated in a similar manner:  
 
Every row operation that subtracts a multiple of a row from another row produces a 
matrix whose determinant is the same as the previous matrix. 
 
Every interchange of rows changes the sign of the determinant. 
 
Every multiplication of a row by a constant multiplies the determinant by that constant. 
 
Tracking the operations performed in Example 2.03.3 above (that reduced matrix A to the 
identity matrix I),  
 
Operations    Net factor to date: 
Multiply Row 1 by (–1):   × (–1)  
From Row 2 subtract (3 × Row 1) and × (–1)  
to Row 3 add (2 × Row 1):   × (–1)  
Multiply Row 2 by (1/5):   × (–1/5) 
To Row 3 add (3 × Row 2):   × (–1/5) 
Multiply Row 3 by (–5/2):   × (+1/2) 
From Row 2 subtract (1/5 × Row 3):  × (+1/2) 
To Row 1 add Row 2:    × (+1/2) 
 
Therefore  

( )
1 1 0

1det I det A det A 3 2 1 2 det I 2
2

2 1 1

−
= × ⇒ = = =

− − −
 

One can also show that  

( )
( )

1

1 1 0 1 1 1 1 1 1
adj A 1adj 3 2 1 1 1 1 A 1 1 1
det A 2

2 1 1 1 3 5 1 3 5

−

 −  − −     
      = ⇒ = =      
      − − − − − − −      
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2.04 Eigenvalues and Eigenvectors    
 
Example 2.04.1   
 
In 3
 , the effect of reflection, in a vertical plane mirror 

through the origin that makes an angle θ with the x-z 
coordinate plane, on the values of the Cartesian 
coordinates (x, y, z), may be represented by the matrix 
equation 
 
 

new old

new old new old

new old

cos 2 sin 2 0
R or sin 2 cos 2 0

0 0 1

x x
y y
z z

θ

θ θ
θ θ

+ −     
     = = − −     
          

x x    

 
The reflection matrix Rθ  may be constructed from the composition of three consecutive 

operations:   
rotate all of 3

  about the z axis, so that the mirror is rotated into the x-z plane; then 
reflect the y coordinate to its negative; then   
rotate all of 3

  about the z axis, so that the mirror is rotated back to its starting position. 
With the help of some trigonometric identities, one can show that 

( ) ( )
( ) ( )

cos sin 0 1 0 0 cos sin 0 cos 2 sin 2 0
sin cos 0 0 1 0 sin cos 0 sin 2 cos 2 0

0 0 1 0 0 1 0 0 1 0 0 1

θ θ θ θ θ θ
θ θ θ θ θ θ
− − − − + −       

       − − − = − −       
             
  
 
Obviously, any point on the mirror does not move as a result of the reflection. 
Points on the mirror have coordinates (r cos θ,  –r sin θ,  z), where  r  and  z  are any real 
numbers.    
[Note that two free parameters are needed to describe a two-dimensional surface.] 

cos cos 2 sin 2 0 cos
sin R sin 2 cos 2 0 sin

0 0 1

r r
r r

z z
θ

θ θ θ θ
θ θ θ θ

−     
     = − ⇒ = − − −     
          

x x    

( )
( )

( )
( )

cos 2 cos sin 2 sin cos 2 cos
sin 2 cos cos 2 sin sin 2 sin

r r r
r r r

z z z

θ θ θ θ θ θ θ
θ θ θ θ θ θ θ

+ −     
     = − + = − − = − =     
         

x   
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Therefore any member of the two dimensional vector space 

( )
cos 0
sin 0 ,
0 1

r z r z
θ
θ

    
    = − + ∈    
        

x    

is invariant under the reflection, ( )Rθ =x x  .   The basis vectors of this vector space,  

cos 0
sin and 0 ,
0 1

θ
θ

   
   −   
      

 are the eigenvectors of Rθ  for the eigenvalue +1,  

(as is any non-zero combination of them). 
 
Any point on the line through the origin that is at right 
angles to the mirror,  (r sin θ,  r cos θ,  0), will be 
reflected to –(r sin θ,  r cos θ,  0). 
For these points, R 1θ = −x x   . 
The basis vector of this one-dimensional vector space, 

sin
cos

0

θ
θ

 
 
 
  

, is the eigenvector of Rθ for the eigenvalue –1, 

(as is any non-zero multiple of it). 
 
The zero vector is always a solution of any matrix equation of the form  Ax = λ x. 
=x 0


  is known as the trivial solution.  
 
Non-trivial solutions of  A x = λ x  are possible only for  λ = +1  and for  λ = –1  in this 
example (with  A Rθ= ). 
 
The eigenvectors for λ = +1 correspond to points on the mirror that map to themselves 
under the reflection operation Rθ . 

The eigenvectors for λ = –1 correspond to points on the normal line that map to their own 
negatives under the reflection operation Rθ . 

No other non-zero vectors will map to simple multiples of themselves under Rθ . 
 
We can summarize the results by displaying the unit eigenvectors as the columns of one 
matrix and their corresponding eigenvalues as the matching entries in a diagonal matrix: 
 

 
sin cos 0 1 0 0

X cos sin 0 and 0 1 0
0 0 1 0 0 1

θ θ
θ θ

−   
   = − Λ =   
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Note that the matrix  X  is orthogonal, (X–1 = XT - its inverse is the same as its transpose)  
[In this case,  X  happens to be symmetric also, so that  X–1 = XT = X.] 
 
Also note that   1X R Xθ

− = Λ  : 

sin cos 0 cos 2 sin 2 0 sin cos 0 1 0 0
cos sin 0 sin 2 cos 2 0 cos sin 0 0 1 0

0 0 1 0 0 1 0 0 1 0 0 1

θ θ θ θ θ θ
θ θ θ θ θ θ

− −       
       − − − − =       
              

 

 
Therefore the matrix  X  of unit eigenvectors of  Rθ  diagonalizes the matrix Rθ . 

This is generally true of any (n × n) matrix that possesses n linearly independent 
eigenvectors (some (n × n) matrices do not). 
 
Note that  
 

( )A A Iλ λ= ⇒ − =x x x 0


    
 
The solution to this square matrix equation will be unique if and only if  det (A – λ I) ≠ 0. 
That unique solution is the trivial solution  =x 0



 . 
Therefore eigenvectors can be found if and only if  λ  is such that  det (A – λ I) = 0. 
 
 
General method to find eigenvalues and eigenvectors   
 
det (A – λ I) = 0 is the characteristic equation from which all of the eigenvalues of the 
matrix A can be found.   For each value of λ, the corresponding eigenvectors are 
determined by finding the non-trivial solutions to the matrix equation (A – λ I) =x 0



 . 
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Example 2.04.2   
 

Find all eigenvalues and unit eigenvectors for the matrix  
2 1

A
1 2

− 
=  − 

. 

 
 
Characteristic equation:    

( ) ( )22 1
det A I 0 0 2 1 0

1 2
λ

λ λ
λ

− −
− = ⇒ = ⇒ − − − =

− −
 

⇒   λ2  +  4λ  + 4  –  1  =  0    ⇒   λ2  +  4λ  +  3  =  0    ⇒   (λ  +  3)(λ  +  1)  =  0 
Therefore the eigenvalues are  

  λ  =  –3   and   λ  =  –1 .  
λ  =  –3: 

( )( ) 2 3 1 0
A 3 I

1 2 3 0
x
y

− +     
− − = ⇒ =     − +     

x 0


  

⇒   x + y  =  0   (only one independent equation) 
⇒   y  =  –x  

⇒    any non-zero multiple of 
1
1
+ 
 − 

 is an eigenvector for λ  =  –3. 

The unit eigenvector is 
12
12
+ 
 − 

 (or its negative). 

λ  =  –1: 

( )( ) 2 1 1 0
A 1 I

1 2 1 0
x
y

− +     
− − = ⇒ =     − +     

x 0  

⇒   –x + y  =  0   (only one independent equation) 
⇒   y  =  x  

⇒    any non-zero multiple of 
1
1
 
 
 

 is an eigenvector for λ  =  –1. 

The unit eigenvector is 
12
12
 
 
 

 (or its negative). 

A matrix  X  that diagonalizes  A  (by  XTAX = Λ) is  
 

1 1 3 02X
1 1 0 12

−   
= → Λ =   − −   

. 

One can quickly show that  
T 1 1 2 1 1 1 3 02 2X AX

1 1 1 2 1 1 0 12 2
− − −       

= = = Λ       − − −       
. 

 
END OF CHAPTER 2 
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