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3. Numerical Methods  
 
The majority of equations of interest in actual practice do not admit any analytic solution.   
Even equations as simple as 

2
andx xx e I e dx− −= = ∫  have no exact solution.   Such 

cases require numerical methods.   Only a very brief survey is presented here. 
 
 
 
Sections in this Chapter:   
 
3.01 Bisection 
3.02 Newton’s Method 
3.03 Euler’s Method for First Order ODEs    
3.04 Fourth Order Runge-Kutta Procedure (RK4)    
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3.01 Bisection 
 
Example 3.01.1    
 
Find the solution of xx e−= , correct to 4 decimal places. 
 
 
From a sketch of the two curves y = x 
and xy e−= , it is obvious that the only 
solution is somewhere in the interval 
(0, 1). 
 
Let ( ) xf x x e−= − . 
Clearly  f (0)  =  –1  <  0 
and   f (1)  =  1–1/e  >  0 
f (x) is continuous and changes sign only 
once inside (0, 1). 
 
Halve the interval repeatedly and retain the half with a sign change: 

 
f (0.50000)  =  –0.1065... < 0    ⇒   root is in (0.50000, 1.00000) 
 

 
f (0.75000)  =  +0.2776... > 0    ⇒   root is in (0.50000, 0.75000) 
 

 
f (0.62500)  =  +0.0897... > 0    ⇒   root is in (0.50000, 0.62500) 
 

 
f (0.56250)  =  –0.0072... < 0    ⇒   root is in (0.56250, 0.62500) 
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Example 3.01.1   (continued)  
 
This method is slow and requires eighteen steps before the change in x is small enough to 
leave the fourth decimal place undisturbed with certainty: 
f (0.567142)  =  –0.0000... < 0    ⇒   root is in (0.567142, 0.567146) 
 
This method is equivalent to zooming in graphically by repeated factors of 2 until the 
desired accuracy is obtained.   The result of a faster graphical zoom, sufficient to 
determine the solution to five decimal places, is displayed here: 

 
 
Correct to four decimal places, the solution to xx e−=  is  x = 0.5671 . 
 
A calculator quickly confirms that  e–0.5671  ≈  0.5671 . 
 
A spreadsheet to demonstrate the bisection method for this example is available from the 
course web site, at "www.engr.mun.ca/~ggeorge/9420/demos/". 
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3.02 Newton’s  Method 
 

From the definition of the derivative, 
0

lim
x

dy y
dx x∆ →

∆
=

∆
, 

we obtain dyy x
dx

∆ ≈ ∆  or, equivalently, 

( )
yx

f x
∆

∆ ≈
′

. 

The tangent line to the curve  y = f (x) at the point  
P(xn, yn)  has slope = f ' (xn) . 
 
Follow the tangent line down to its x axis intercept. 
That intercept is the next approximation xn+1 . 

( )1 0n n nny y y y f x+∆ = − = − = −  and 

1 nnx x x+∆ = −  
( )
( )1

n
nn

n

f x
x x

f x+⇒ − = −
′

 

If  xn  is the nth approximation to the equation f (x) = 0, then a better approximation may 
be 

( )
( )1

n
nn

n

f x
x x

f x+ = −
′  

 
which is Newton’s method. 
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Example 3.02.1    
 
Find the solution of xx e−= , correct to 4 decimal places. 
 
 
From a sketch of the two curves y = x 
and xy e−= , it is obvious that the only 
solution is somewhere in the interval 
(0, 1).   A reasonable first guess is  

0
1
2 .x =  

 
( ) xf x x e−= −    ( ) 1 xf x e−′⇒ = +    

( )
( ) 1

n n
n n

n

n

n

x

x
f x x ex x
f x e

−

−
−

⇒ − = −
′ +

. 

 
Table of consecutive values: 
 

nx  ( )n n
nxf x x e−= −  ( ) 1n

nxf x e−′ = +  
( )
( )

n

n

f x
f x′

 

0.500000 –0.106531 1.606531 –0.066311 
0.566311 –0.001305 1.567616 –0.000832 
0.567143  0.000000 1.567143  0.000000 
0.567143    

 
Correct to four decimal places, the solution to xx e−=  is  x = 0.5671 . 
In fact, we have the root correct to six decimal places,  x = 0.567143. 
 
A spreadsheet to demonstrate Newton’s method for this example is available from the 
course web site, at "www.engr.mun.ca/~ggeorge/9420/demos/". 
 
This method converges much more rapidly than bisection, but requires more 
computational effort. 
 
 
 
Note that Newton’s method can fail if  f ' (x) = 0  in the neighbourhood of the root.   A 
shallow tangent line could result in a sequence of approximations that fails to converge to 
the correct value. 
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3.03 Euler’s Method for First Order ODEs    
 
One of the simplest methods for obtaining the numerical values of solutions of initial 
value problems of the form 
 

( ) ( )0 0, ,y f x y y x y′ = =  
 
is Euler’s method. 
 

From the definition of the derivative, 
0

lim
x

dy y
dx x∆ →

∆
=

∆
, we obtain dyy x

dx
∆ ≈ ∆ . 

If we seek values of the solution  y(x)  at successive evenly spaced values of x, then we 
have ( )1 1 ,n n n n nn ny y y y y y y f x y x+ +∆ = − ⇒ = + ∆ ≈ + ∆ . 
With (by convention)  h x= ∆ , we have the iterative scheme 
 

( )1 ,n n nny y h f x y+ = +  
 
However, errors propagate rapidly unless the step size  h  is very small, which requires a 
proportionate increase in the number of computations.   Several modifications to Euler’s 
method have been proposed, that replace the derivative ( ),n ny f x y′ =  by a weighted 

average of values of  f  at points around ( ),n nx y . 
 
One of the most popular modifications is the fourth order Runge-Kutta method (RK4).    
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3.04 Fourth Order Runge-Kutta Procedure (RK4)    
 
Values ( ),n nx y  [with  0nx x n h= + ] of the solution  y(x)  to the initial value problem 
 

( ) ( )0 0, ,y f x y y x y′ = =  
 
are given by the iterative scheme 
 

( )
( )
( )
( )

( )

1

2 1

3 2

4 3

1 2 3 41

1 1
2 2
1 1
2 2

,

,

,

,

2 2
6

n n

n n

n n

n n

nn

k f x y

k f x h y h k

k f x h y h k

k f x h y h k
hy y k k k k+

=

= + +

= + +

= + +

= + + + +

 

 
 
 
Example 3.04.1    
 
Use the RK4 procedure with step size  h = 0.1  to obtain an approximation to  y(1.5)  for 
the solution of the initial value problem   y'  =  2xy ,   y(1) = 1. 
 
 
x0 = 1, h = 0.1 and we want  y(1.5).   1.5  =  1 + 5×0.1, so we need to find  y5. 
(x0, y0) = (1, 1)  and  f (x, y)  =  2xy.  
 
For  n = 0: 

( )
( )( ) ( )( )
( )( ) ( )( )

( ) ( )( )

( ) ( ) ( )( )

1

2

3

4

1 2 3 4

0 0 0 0

1 0

1 1
2 2
1 1
2 2

, 2 2 1 1 2

2 1 0.1 1 0.1 2 2.31

2 1 0.1 1 0.1 2.31 2.34255

2 1 0.1 1 0.1 2.34255 2.715361

0.12 2 1 2 2 2.31 2 2.34255 2.715361
6 6

k f x y x y

k

k

k

hy y k k k k

= = = × × =

= + + =

= + + =

= + + =

= + + + + = + + + +

 

Therefore  y(1.1)  ≈  1y   =  1.23367435 
 
We can proceed with a similar chain of calculations to find  2 3 4, ,y y y  and finally 5y  . 
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Example 3.04.1   (continued) 
 

n xn  yn  k1  k2 k3 k4 
0 1.000000 1.000000 2.000000 2.310000 2.342550 2.715361 
1 1.100000 1.233674 2.714084 3.149571 3.199652 3.728735 
2 1.200000 1.552695 3.726469 4.347547 4.425182 5.187555 
3 1.300000 1.993687 5.183586 6.082738 6.204124 7.319478 
4 1.400000 2.611633 7.312573 8.634059 8.825675 10.482602 
5 1.500000 3.490211     

 
Therefore   y(1.5)  ≈  3.4902 .   
 
This initial value problem happens to have an exact solution, 

2 1xy e −= . 
We can therefore test the accuracy of the RK4 procedure in this case. 
 
The exact value of  y(1.5) is 3.4903..., an absolute error of less than 0.0002 and a relative 
error of less than 0.01%.   Euler’s method, in contrast, has an error exceeding 16%! 
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