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6. Calculus of Variations

The method of calculus of variations involves finding the path between two points that
provides the minimum (or maximum) value of integrals of the form

b
J' F(xy,y")dx
a
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6.01 Introduction

Example 6.01.1

To find the shortest path, (the geodesic), between two points, we need to find an
expression for the arc length along a path between the two points.

Consider a pair of nearby points.
The element of arc length As is approximately
the hypotenuse of the triangle

(As)" = (&%) + (ay)’
(as)° _ (ax)° (A )2
(Ax) (Ax) (Ax)

In the limit as the two points approach each
other and Ax — 0, we obtain

&) -+
dx dx
2
2
dx dx
The arc length s between any two points x = a and x = b along any path C in R? is the
line integral

dy2 J‘ RY .
= |ds = 1+|—=| dx = 1+ (f d h C isthepath y=f
S (I:s J" +(dx] X C«/ +(f'(x))" dx where C isthe path y=f(x)
C

The geodesic will be the path C for which the line integral for s
attains its minimum value. Of course, in a flat space such as

IR?, that geodesic is just the straight line between the two points.
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6.02 Theory

We wish to find the curve y(x) which passes through the points (x,,Y,) and (x.Y;)
and which minimizes the integral

X

| = J.X F(xy(x),y'(x))dx
0

Consider the one parameter family of curves y(x) = u(x) + ar(x), where « is a real

parameter, 5(x) is an arbitrary function except for the requirement 7(x,)=7(x,)=0

and u(x) represents the (as yet unknown) solution.

Every member of this family of curves passes through the points (X, yo) and (xi, y;).
For any member of the family,
X
() = I 1F(x,u(x)+a77(x),u’(x)+a n'(x))dx
Xo
we know that y(x) = u(x) minimizes I.

Therefore the minimum for | occurs when o = 0, so that dr = 0.
daly -0

Carrying out a Leibnitz differentiation of the integral I (a), F

dl X 9 /I\ :
— =0-0+ I —F(x,u(x)+an(x),u(x)+an'(x)) dx Xy oy
da X, O A A

4 oF o oF & rarda
_ J-xo {O + Ea(u(xﬁan(x)) + aylg(u'(x)+oz77’(x))}dx

At the minimum « =0, so that y(x) = u(x) and y'(x) = u'(x). Therefore
0= J‘Xl[ (x)ﬁ + ’(X)GF}dx
X, 7 ou 7 ou’

Also note, by the product rule of differentiation, that
d

0 ) = 0%+ w0 S L]

Therefore the integral can be written as

0= .Xl{n(x)% + % n(x)%) - n(x)%(;’iﬂdx

v XO
0= B (X)_ﬁ -4 al:j_dx + J.Xli( (X)ﬁj dx
°Xo77 | au dx\ou') | X, dx 7 ou’
.Xl r T Xl
0= 77(x)ﬁ—i aFj dx+{n(x)aF}
J %, | ou  dx\ou')] ou’ Jx,
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But n(xo) = n(xl) =0
Therefore the minimizing curve u(x) satisfies

[n E 2 o = o
Xon ou dx \ ou’

But 7(x) is an arbitrary function of x, which leads to
oF d (GFj _o
ou dx\ ou’

b
Thus, if y= f (x) is a path that minimizes the integral J. F(xy,y)dx,then y=f(x)
a

and F (x,y,y") must satisfy the Euler equation for extremals
dfoF| oF _ 0
dx | oy’ oy

Euler’s equation requires the assumption that F(x, y, y") has continuous second
derivatives in all three of its variables and that all members of the family

y(x) = u(x) + a n(x) have continuous second derivatives.

Expansion of Euler’s Equation:

B
b
d (oF , oF , B
&[@,(X,V(X),v (X))J - 5 V()Y (%) = 0 x/%\i,
OF i OF N
axay!+y(x)ayayr+y(x)ay!2_a_y_o X X
or

Y'Fyy + YFyy + (Fy = Fy) = 0

z

Note: Leibnitz differentiation of 1(z) = Ig((;F(x,z)dx with respect to z is:
f(z

dl 9(2) o

- (F(9(2).2) - FF(1(2)2) + [, ZF(x2)ox

A . I r |. - d ' Xf | f




ENGI 9420 6.03 - Examples Page 6.05

6.03 Examples

Example 6.03.1

Xl ( y,)Z
(@ Find extremals y(x) for | = j ~——dx.

xg X
(b) Find the extremal that passes through the points (0, 1) and (1, 4).
(c) Prove that the extremal in part (b) minimizes the integral I.

2
@ F-) :%:o
X

Euler’s equation simplifies to

"2 ,
dx| oy’ x° dx | x3

!

2y ' 3 4
= F=6 = y' = Sex = y=3cxt +¢,
Redefining the arbitrary constants, this leads to the two-parameter family of
extremals

y(x) = Ax*+B

(b) Thecurve y(x) = Ax* + B must pass through both (0, 1) and (1, 4).
1=0+B = B=1
4=AQ)"+1 = A=3

Therefore the extremal through (0, 1) and (1, 4)is T',: y=3x"+1.
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Example 6.03.1 (continued)

(c) Toprovethaty = 3x*+ 1 really is the path between (0, 1) and (1, 4) that minimizes

Xl ( y,)2
Xo X3

the value of the integral | = J. dx, consider the related family of functions

r: y=3x"+1+g(x), where g(0)

g(1)=0 and g(x) is otherwise arbitrary.
2

I(r) = J-l(y')z dx = r(m%g'(x)) dx

0 X3 0 X3

°1(12x3)2 + 24x3g'(x) + (g’(x))2
) Jo X3 dX

- .l@ dx + 24I:g’(x) dx + le dx

o X OX3

= I(T) = I(T,) + 24(9@—9@7) +I

1

X

Note that the integral J (g (3)) dx is necessarily positive, because g'(x) cannot
0 X

1 /(w2
wdx > 1(Iy) for0<x<1.
0o X

be identically zero on [0, 1] and the integrand is non-negative on [0, 1].
Also g(0)=g(1)=0. Therefore I(I')>1(T,) and I'; minimizes I.

0
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If F is explicitly independent of x and y, so that the integral to be minimized is of the

X
form | = I 1F(y’) dx, then Euler’s equation simplifies to

)
GE)-F =0 F 'F "Fo — Fy = 0
&(y’)_y_ = Fyx ¥ Y Py ¥ ¥hyy = Fy =

-0 =0 =0

= | YRy =0
If Fy, £0 then y"=0 = |y(x)=Ax+B (a line).

Example 6.03.2 (Example 6.01.1 revisited)

Show that the geodesic on R* between any two points x =a and x = b is the straight
line between the two points.

The arc length s between any two points x =a and x = b along any path C in R? is the
line integral

sldsimdx

X
This integral is of the form | = I '

F(y')dx, where F(y') = 1+ (y')°.
X0

Clearly

Fyys 20 = y(x)=0vx = y(x)=Ax+B

which is a straight line.

But the extremal must pass through both points.

Only one straight line can pass through a pair of distinct points on R?.
Therefore the geodesic is the straight line between the two points.
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If F is explicitly independent of y, so that the integral to be minimized is of the form

X
| = I 'F (x, y') dx, then Euler’s equation simplifies to

X0
%(Fy,)—0=0 = [F, =¢

If F is explicitly independent of X, so that the integral to be minimized is of the form

X
| = I 'F (y,y') dx, then multiply Euler’s equation
X0

o) -+
by y' to obtain

y'di(Fy,) ~yF, =0 = (%(y’Fy,) - y”Fy,J ~ yFy =0

y =0

Btd_F:ﬁJradeJrade:O+ 8F+y,,ﬁ
dx OX oy dx  oy' dx oy oy’
d/, dF ; —

= &(yFy,)—&—O = |YF, - F=¢

Example 6.03.3 The Brachistochrone Problem of Bernoulli (1696)

Find the curve y=f (x) such that a particle sliding under gravity but without friction on
the curve from the point A(X,,Y,) tothe point B(x,y,) reaches B in the least time.

The sum of kinetic and potential energy of the particle is constant along the curve:
E = Imv + mgy = const.

_d E = lm(%T + mgy = const
dt 27 dt '

o _ [E S B

— 29y

= = dt =
dt m 2E
m
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Example 6.03.3 (continued)

Therefore the time taken to slide down the curve y(x) is

If the point A is at the origin, y is measured downwards and the particle is released from
rest, then the total energy is E = %m(O)2 + mg(0) = 0 and the integral for travel time
simplifies to

Xg "2
1+(y)
tly(x)| = ————dx
ool - [
The integrand is an explicit function of y and y' only, not x.
When F is explicitly independent of x, y'Fy, -F=c
y 1+ (y)
A/Zg \/1+ y’)2 29y
"2 "2 N2
= (v - (L (V) = a2ev(t+ ()

= 1l=g¢ 2gy(1+ (y) ) = Y(l+ (Y')Z) =C,

= = C

Use the substitution y' =

Q_|Q_
<

=tang. Then

y(t+tan*g) = c, = ysec2¢ =c, = y=c,co8°¢= Cz(lJrC—SSM)
do= o (2osACsing) 4 2singcos
tan¢ tan ¢ [Wj

COS ¢
= dx = —c,(2cos’§)dg = —c,(1+cos2¢) dg

= X = —czj(1+c032¢)d¢ (¢+sm2¢j + C,

Therefore the solution can be expressed in parametric form by
(X(#), Y(¢)) = (c; + r(2¢ + sin2¢),—r (L + cos2¢))

C
where r = -2,

2
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Example 6.03.3 (continued)

Replacing 2¢ by 6+ and defininga = ¢c; + rr,

(x(0),y(0)) = (a + r(6 —sind),—r(1 - cosp))

which is the parametric equation of a two-parameter family of cycloids.

+y
(25 )

>
W

(%, %)

Parameter a shifts the curve horizontally, while r changes the magnitude of the radius
of the generating circle. [A cycloid is the path generated by a point on the circumference
of a circle that rolls without slipping along an axis. @ is the angle through which the
rolling circle of radius r has rotated.]

Example 6.03.4 (The Catenary)

Find the equation y=f(x) of the curve between points A(X,,Y,) and B(x,Y,)

which is such that the curved surface of the surface of revolution swept out by the curve
around the x-axis has the least possible area.

The element of curved surface areais 27y As, ¥
where As is the element of arc length. >

The total curved surface area is therefore
X=X

X
AzZﬂI 1yds:2nj by 98 gy
X=X Xo dx

Xl 2

= 272'"- y 1+(%J dx
X \} dx
0

The integrand is of the form F (y, y'),
with no explicit dependence on x.

Therefore the extremal is the solution of y’% - F =c, where
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Example 6.03.4 (continued)

y1f1+
= yy\/ﬂiy - y\f1+

!

= y(( ) ): 1/1+ = y=-¢ 1+(y')2

, d
- y2=c12(1+(y)2) - d—izi y—2—1

Let y=c, cosht

then ﬂ = J_r,\/coshzt — 1 = ++/sinh?t = *sinht

But dy d_dy_ c,sinht = iclﬂ o & 1 = X=*CL+C
dx dt  dt dx dt
Y
c ¢

Let A=c and B = ~% and note that cosh(t) is an even function.
Cl
Then the two-parameter family of extremals is

y(x) = Acosh [%+ B)

which is the catenary curve.
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Example 6.03.5

Find the geodesic (shortest path) between two points P and Q on the surface of a sphere.

Let the radius of the sphere be a and choose the coordinate system such that the origin is
at the centre of the sphere. The relationship between the Cartesian coordinates (X, Y, z)
of any point on the sphere and its spherical polar coordinates (¢, ¢) is

X =a s!n 0 C_OS @ & = constant & = constant
y = asinésin ¢
Z = acosd

Note that the radial coordinate r is constant

(r = a) everywhere on the sphere.

The element of arc length in the spherical polar
coordinate system is

ds* = dr? + r’dé + r’sin’ @ d¢’
But, on the sphere, dr =0
= ds* = a’(de” +sin’ 0 dg’)

2 2
(Ej = a’|1+ sinze(d—¢j
déo déo
The distance along a path on the sphere between points P and Q is therefore

s =j ds=I B go-| a 1+sin29(%j 4o
P p d& b dé

The geodesic between P and Q on the surface of the sphere is the function ¢(6) that
minimizes the integral for s.

dg

For x read @, foryread ¢, fory' read FY

2
The integrand is F(6,¢4,¢') = a\/l + sinze[g—g :

The integrand is an explicit function of ¢ and j—z but not of ¢.
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Example 6.03.5 (continued)

Therefore the Euler equation for the extremal, %(F@) - F¢ = 0, simplifies to

- 2 d7¢
oF asin e(dej

o¢' 2
¢ Jl + sinzeidﬂ
do
= [a sin%’(%n = ¢? (1 + sinze(d—(bn
dé do

2 2 2
= sin’g(a’sin’ 6 - cz)(%j =c2 = (%j = — ZC. > >
de do sin® 6(a’sin* @ - ¢?)
= 90 C
d0  sing\fa?sin?6 — c?
After substitutions, this can be integrated to a function ¢ (), which, upon conversion
back into Cartesian coordinates, can be found to lie entirely on a plane through the origin.

But the intersection of any plane through the origin with the sphere is just a great circle
on the sphere.

Alternatively, reorient the coordinate system (or rotate the sphere) so that one of the two
points is at the north pole (§=0). Then 2—; = ¢ becomes 2—; = 0 (because sin =0

at the pole and ¢ must have the same value everywhere on the path).
. d¢
asin’é (j
= do =0 = sinze(d—¢} =0

2 do
\/1 + sin? 0(32)

sin @ #0 along the path between the points, so

a¢ =0 = ¢ = constant
déo
which, again, is an arc of a great circle (a line of longitude from the north pole to the

other point).

Therefore the geodesic between any two points on the sphere is the shorter arc of the
great circle that passes through both points.
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Example 6.03.6

Find the path y =f (x) between the points (0, 0) and (#/2, 0) that provides an extremum
for the value of the integral

/2
_ N2 2 .
| = jo ((y) y 4ysmx)dx

F = (y)*—y? —4ysinx
%(%) — %: = %(Zy') +2y +4sinx =0

= y'+y =-2sinx

This is a second order linear ODE with constant coefficients and a pair of boundary
conditions (solution curve passes through (0, 0) and (#/2, 0)).

AE: 1°+1=0 = A=+]j

CF.: Yo = Acosx + Bsinx
P.S. Method of undetermined coefficients:

R(x) = —2sinx, but sin x is part of the complementary function.
Thereforetry y, = cxcosx + dxsinx = y, = —2csinX + 2dcosx — Y,
Substitute yp into the ODE:

Yo + Y, = —2csinX + 2dcosx = —2sinX
= c¢=1 d=0
Yp = XCOSX

G.S.: y = (x+A)cosx + Bsinx

Impose the boundary conditions:
(0,0): 0=A+0

(2,0: 0=0+8B
Therefore the complete solution is

y = f(x) = xcosx

It can be shown that this sole extremal solution leadsto | = —% <0

The trivial path y=0 leadsto | = 0
Therefore the extremum must be an absolute minimum.
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6.04 Integrals with more than One Dependent Variable
[for reference; not examinable]

Let the required curve y =f(x) be defined parametrically, as x = x(t), y = y(t).
Then the integral to be minimized (or maximized) is of the form

| = Ltolp(t,x(t),y(t),x(t),y(t))dt Cwhere % = x(t,). % = x(t,)

To derive the necessary conditions on x(t) and y(t), we proceed as before.
Let &(t) and #(t) be functions that are arbitrary except for the requirements

¢(to) = <(t) = n(to) = n(t)) = 0
Let u(t) and v(t) be the optimum solutions for x(t) and y(t) respectively.
Then an arbitrary curve can be written as

X =u®) + al®) , yt) = v + an().
The integral for which the extremum is required becomes
t
| (a) = LlF(t,u(t)+a§(t),v(t)+a77(t) U(t)+aé(t),v(t)+an(t))dt
0

Performing a Leibnitz differentiation of this integral,

gl (hoF ) oF OF ;.\ OF .
ot [0 Tet = T+ T+ For()

The extremum of | occurs at a = 0, where g—l = 0.
(04

Set =0, x(t) = u(t) and y(t) = v(t) so that

]

oF oF oF

0= —&(t — dt
J (G S G0+ Tiw)
However, from the product rule of differentiation,

oFde  d(oF d (oF oFdp  d(oF d (oF
o o) Gala) = S5 als) mals)
a0dt ot dt | au vdt ot dat  ov

so that
“or  oF d(_ oF d(e6F) df oF d(oF
°:Lﬂaf+5” §le %)@l %) G ) gl %))
“or  oF oF d (oF oOF  oF
:jto(ﬁ‘f a T (auj dt( D [§_+ av}
But (to) = <(t) = #n(to) = n(t1) = 0.

= o= [{Z-4(Z))o(Z-4(Z))e

The functions ¢ and # are arbitrary and independent of each other, yet the integral must
equal zero. The optimal path must therefore satisfy the Euler equations

ty
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E(G—Fj—a—F =0 i(a_Fj_a_F _ 0
dt\ ou ou dt\ ov oV
Any path x =x(t), y =y(t) that minimizes (or maximizes) the integral
t
| = Llp(t,x(t)’Y(t),X(t),y(t))dt , where X, =x(t,), % =x(t,)
0

must therefore satisfy
i(ﬁj_ﬁ_o dfoF)_oF _,
dt\ ox OX dt\ oy oy
This concept can be extended to problems involving a set of n dependent variables
i (%)}
With y;(%) and y;(x) (i =12...,n) all prescribed, the integral

| = J.XxlF(x, Y1 (%), Y2 (X) o0 Yo (%), Y1 (%), Y (X)), ¥ (X))

0

is minimized (or maximized) only if all members of the set {y; ()} satisfy the Euler

i(&F]_@_F:O
dx { oy; oy;

equations
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Example 6.04.1

Find the functions y(x) and z(x) that, between the fixed points (Xo, Y(Xo0)) and (x1, y(x1))
and between the fixed points (Xo, z(Xo)) and (X1, z(X1)) respectively, provide an extreme
value for the integral
X
| = I 1(2yz —2y° + (y')2 - (z’)z)dx

X0

F =2yz — 2y° + (y’)2 - (z’)2

§:22—4y+0—0, i—0—0+2y'—0
oy oy

; =

oF oF

— =2y-0+0-0, =0-0+0-27
0z oz’
The Euler equations become
S(2y) - (22-4y) =0 = y2y=2 €
and
d ’ "
&(—22) -(2y)=0 = y=-z (2)

Substituting (2) into (1):

(—z”)” +2(-2)=z = W +22+2=0

The auxiliary equation for this ODE is

222 4+1=0 = (2241)=0 = A=zx]#]
The complementary function (which is also the general solution) for z is
z = (Ax+B)cosx + (Cx+D)sinx

Substituting back into (2):
y = —2" = +2Asinx — 2Ccosx + (Ax+B)cosx + (Cx+D)sinx
= y = (Ax+B-2C)cosx + (Cx+D+2A)sinx

The values of the four arbitrary constants can be determined from the values of the four
constants y(Xo), Y(X1), z(Xo) and z(x;) (although it is likely that that determination will need
to be by numerical methods).
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6.05 Integrals with Higher Derivatives [for reference; not examinable]

The path  y(x) which passes through the point (xo, Yo) with prescribed slope y'(xo),
passes through the point (xi, y1) with prescribed slope y'(x;) and which minimizes the
integral

= [ R0y (0. (0.7 (0))

Xp

must be a solution of the Euler equation
d* ( oF d(oF oF

2 " Ty ' T = O
dx“ \ oy dx\ oy oy

For an integrand of the form F = F(x, Y, y",...,y(n)),

the Euler equation is
(op 9O(OF ), @R} dfoF) OF
dx"(ay™ ] 7 dxlay" ) dxloy oy

Example 6.05.1

Find the path y(x) which minimizes the integral
X1
I =I (16y2—(y”)2+¢(x))dx
Xo

where ¢(x) is any twice differentiable function of x only and y and y' are prescribed at
both endpoints Xy and x;.

F = 16y° —(y")2 +¢(X)

- F_ oy Fo_g, F_gy
o B o

The Euler equation becomes
2 4
d(ﬁj d(aF]+ﬁ=0:>—2%—O+32y=0
X

W) wy) a
d'y
= —16y =0
dx* y
The auxiliary equationis 2* — 16 = 0 = (12+4)(°-4) = 0
— ) = +2), +2.
Therefore

y(x) = Ae® + Be™* 4+ Ccos2x + Dsin2x
The values of y and y' at both endpoints can be used to find the values of A, B, C, D.
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6.06 Integrals with Several Independent Variables
[for reference; not examinable]

Consider the problem of finding w(x, y) that minimizes the integral
I = ”F(x, Y, W(X, Y)Wy (X, ), wy (X, y))dx dy
D

where D is some region in the x-y plane bounded by a simply connected curve C and
w(X, y) (or its normal derivative) is prescribed on C. The Euler equation in this case is

O, o)k _F
ox\ow, ) oylowy | ow

Example 6.06.1

Find a constraint on the function w(x, y) that minimizes the integral

AE-(3]mee

where p is a constant and w is prescribed on the closed boundary C of the domain D.

F=3w’ + 3w’ + pw
OF R
ow, T awy Y aw

The Euler equation therefore becomes

%(WX) + %(Wy) -(p)=0 = wy+wy =p
Therefore w(x, y) must be such that
Vw = p
Note (from section 9.05) that if p >0, then w is subharmonic and, everywhere in D, w is
bounded above by the maximum value of w on the boundary C.

If p <0, then w is superharmonic and, everywhere in D, w is bounded below by the
minimum value of w on the boundary C.

If p =0, then w is harmonic and, everywhere in D, w is bounded between the minimum
and maximum values of w on the boundary C.
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6.07 Integrals subject to a Constraint [for reference; not examinable]

Example 6.07.1

Find the curve y(x) between (0,0) and (1,0) of fixed length L (> 1) that maximizes the

1
area under the curve, A = I y dx.
0

1
We are required to maximize the integral J' y dx subject to the constraint
0
1 2
J- w/1+(y') dx =
0

Introduce the Lagrange multiplier A.
Then this optimization problem becomes one of finding the minimum value of

L(y,y;4) = I:(y + ﬂ~/1+(y’)2)dx.

The Euler equation for extremals, d (aF] _9F = 0, becomes
dx{ oy’ oy
i L - 1=0 = i—y — X+C1
KL (y) 1+ ()
= (Ay) = (x+c1)2(1+(y’)2) = (ﬂf—(x+cl)2)(y’)2 = (x+¢,)
2

' X+C d X+cC

R -
-(x+¢) dx AP =(x+¢)

X+C

= Jldy _J‘

1}12 (x+c)’
Let x+c =Asind = dx = Acosddb
Then

~ jﬂsin0~ﬂ cosé

‘flz(l—sinze)
= y+c, = —JAP-A%sin?0 = — A2 —(x+¢)’

= (x+¢) + (y+c,) = A2

do = J.Asinede = —/Acosé —c,
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Example 6.07.1 (continued)

But (0,0) and (1,0) are both on the curve.

= ¢’+¢% = (l+¢) +¢c2 =4 = ¢ =+fl+c

The positive root yields a contradiction (0 = 1).

The negative root yields 2¢,=-1 = ¢=-3 = c,=+,/1°-1.
We therefore obtain the upper arc of one of the two circles

(x—%)2 + (yJ_r\/ﬂ)2 = 1°

of radius A and centre (% LMZ —%), passing through both (0,0) and (1,0).

The value of the parameter A depends on the length L of the curve.
R 2 2 2
Foracircle (x+c,)” + (y+c,)” = A%,

dy , X+C,
2 2 2 -0 - _
(x+c,) + (y+C2)dx =y S
2 2 2
- 1+(y,)2 _ (y+c,)” + (>2<+c1) - A 2
(y+¢,) A% —(x+c,)

1
1

= L= I «/1+(y')2 dx = j 4 — dx.

Using the substitution x—1 = Asing, we have

22—(x—%)z = A%cos’¢ and dx = Acosgde

x=1 . x=1 X—l '
= L= AACOSP gy [g (ﬂ = | AArcsin| —2 || =22 Arcsin(ij.
o, AcCOSg x=0 A 24

0
Therefore A is related to the given arc length L by

Zﬂsin(ij =1.
22

As examples, if L =2, then 4~ 0.528.
If L=% then 4 :% , for which the optimal curve is the entire upper semicircle of

(-3 v - 3

END OF CHAPTER 6
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