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7. Fourier Series and Fourier Transforms    
 

Fourier series have multiple purposes, including the provision of series solutions to some 

linear partial differential equations with boundary conditions (as will be reviewed in 

Chapter 8).   Fourier transforms are often used to extract frequency information from 

time series data.   For lack of time in this course, only a brief introduction is provided 

here. 

 

Sections in this Chapter:  

 

7.01 Orthogonal Functions 

7.02 Definitions of Fourier Series 

7.03 Half-Range Fourier Series 

7.04 Frequency Spectrum 

 

Sections for reference only, not examinable in this course: 

7.05 Complex Fourier Series 

7.06 Fourier Integrals 

7.07 Complex Fourier Integrals 

7.08 Some Fourier Transforms 

7.09 Summary of Fourier Transforms 
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7.01 Orthogonal Functions 

 

The inner product (or scalar product or dot product) of two vectors u and v is defined in 

Cartesian coordinates in 3  by  
3

1 1 2 2 3 3

1

k k

k

u v u v u v u v


   u v  

The inner product possesses the four properties: 

Commutative:   u v v u  

Scalar multiplication:      ,k k k u v u v  

Positive definite:  
 

 

0 if

0 if

  

 

u 0
u u

u 0
 

Associative:      u v w u v u w  

Vectors ,u v  are orthogonal if and only iff  0u v .    

A pair of non-zero orthogonal vectors intersects at right angles. 

 

The inner product of two real-valued functions  1f   and  2f   on an interval [a, b]  may be 

defined in a way that also possesses these four properties: 

 

     1 2 1 2,
b

a
f f f x f x dx   

 

Two functions  1f   and  2f   are said to be orthogonal on an interval [a, b] if their inner 

product is zero: 

     1 2 1 2, 0
b

a
f f f x f x dx   

 

A set of real-valued functions          0 1 2, , , , nx x x x     is orthogonal on the 

interval [a, b] if the inner product of any two of them is zero: 

       , 0m n m n

b

a
x x dx m n       

 

If, in addition, the inner product of any function in the set with itself is unity, then the set 

is orthonormal:   

     
 

 

0
,

1
m n m n

b

mn
a

m n
x x dx

m n
    


   


  

where mn  is the “Kronecker delta” symbol. 
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Just as any vector in 3  may be represented by a linear combination of the three 

Cartesian basis vectors, (which form the orthonormal set {i, j, k}), so a real valued 

function  f (x)  defined on [a, b] may be written as a linear combination of the elements of 

an infinite orthonormal set of functions       0 1 2, , ,x x x    on [a, b]: 

 

       0 0 1 1 2 2f x c x c x c x       

 

To find the coefficients  cn, multiply  f (x)  by  n(x) and integrate over [a, b]: 

           

   

0 0 1 1

0

n n n

m m n

b b b

a a a

b

a
m

f x x dx c x x dx c x x dx

c x x dx

    

 




  



  

 
 

 

But the {  n(x) } are an orthonormal set.   Therefore all but one of the terms in the 

infinite series are zero.   The exception is the term for which  m = n, where the integral is 

unity.   Therefore  

   n n

b

a
c f x x dx   

and  

       
0

n n

n

b

a
f x f x x dx x 



   
   

  
   

 

If the set is orthogonal but not orthonormal, then the form for f (x) changes to  

 

 
   

 
 

20

n

n

n
n

b

a

b

a

f x x dx

f x x

x dx








  
  
  
  
  
  




  

 

The orthogonal set { n(x)} is complete if the only function that is orthogonal to all 

members of the set is the zero function  f (x)  0.   An expansion of every function f (x) in 

terms of an orthogonal or orthonormal set { n(x)} is not possible if { n(x)} is not 

complete. 

 

Also note that a generalised form of an inner product can be defined using a weighting 

function w(x), so that, in terms of a complete orthogonal set { n(x)}, 

 

 
     

   
 

20

n

n

n

b

a

b
n

a

w x f x x dx
f x x

w x x dx







  
  

   
  
  





 

We shall usually be concerned with the case  w(x)  1 only. 
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Example 7.01.1   

 

Show that the set { sin nx }  n  is orthogonal but not orthonormal and not complete 

on [–, +]. 

 

 

    
1

sin sin cos cos
2

mx nx dx m n x m n x dx
 

  
      

If m  n, then  

   sin sin1
sin sin 0

2

m n x m n x
mx nx dx

m n m n










  
   

  
  

The set { sin nx } is therefore orthogonal on [–, +]. 

 

If m = n, then  

 
1 1 sin 2

sin sin 1 cos 2 1
2 2 2

nx
nx nx dx nx dx x

n

 

  


 



 
      

    

so the set is not orthonormal, (although the set 
sin nx



 
 
 

 is orthonormal). 

 

To show that the set is not complete on [–, +], we need to find a non-trivial function 

that is orthogonal to sin nx for all positive integer values of n. 

 

Note that sin nx is an odd function of x and that the range of integration is symmetric 

about x = 0.   The product of any odd function with any even function is another odd 

function.   The integral of any odd function over a range of integration that is symmetric 

about x = 0 is zero.   This leads us to try any even function.  The simplest non-trivial even 

function is  f (x)  1. 

 

cos
1sin 0

nx
nx dx n

n



 


 
     
   

 

The function f (x)  1 is therefore orthogonal to all members of the set { sin nx }. 

The set { sin nx } is therefore not complete. 

 

 



ENGI 9420 7.02  -  Full Range Fourier Series Page 7.05 

 

7.02 Definitions of Fourier Series 

 

Example 7.02.1    

 

Show that the set  1, cos , sin ,
n x n x

n
L L

        
       

       
 is orthogonal but not 

orthonormal on [–L, L]. 

 

 

Inner product of any two distinct sine functions (m  n): 

 

   1
sin sin cos cos

2

L L

L L

m n x m n xm x n x
dx dx

L L L L

  

 

     
     

     
   

 

 

 

 1
sin sin 0

2

L

L

m n x m n xL L

m n L m n L

 

 


  
   

  
 

 

Inner product of any two distinct cosine functions (m  n): 

 

   1
cos cos cos cos

2

L L

L L

m n x m n xm x n x
dx dx

L L L L

  

 

     
     

     
   

 

 

 

 1
sin sin 0

2

L

L

m n x m n xL L

m n L m n L

 

 


  
   

  
 

This result holds also for m = 0, for which cos 1
m x

L

 
 

 
. 

 

Inner product of any sine function with any cosine function: 

 

   1
sin cos sin sin

2

L L

L L

m n x m n xm x n x
dx dx

L L L L

  

 

     
     

     
   

 

 

 

 
 

 

1
cos cos

2
0

1 2
cos 0

2 2

L

L

L

L

m n x m n xL L
m n

m n L m n L

L n x
m n

n L

 

 









   
   

    
  
  

   
   

 

This result holds also for m  n = 0, for which cos 1
n x

L

 
 

 
. 
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Example 7.02.1   (continued) 

 

Therefore the set   1, cos , sin ,
n x n x

n
L L

        
       

       
 is orthogonal on [–L, L]. 

 

Inner product of any sine function with itself:  

 

1 2
sin sin 1 cos

2

L L

L L

n x n x n x
dx dx

L L L

  

 

     
      

        

1 2
sin

2 2

L

L

L n x
x L

n L



 

 
   

 
 

 

Inner product of any cosine function with itself (n > 0):  

 

1 2
cos cos 1 cos

2

L L

L L

n x n x n x
dx dx

L L L

  

 

     
      

        

1 2
sin

2 2

L

L

L n x
x L

n L



 

 
   

 
 

 

Inner product of the function 1 with itself:  

 

1 1 2
L L

LL
dx x L L


    
   

 

Therefore the set is not orthonormal for any choice of L, although the related set  

 
1 1 1

, cos , sin ,
2

n x n x
n

L LL L L

        
       

       
  is orthonormal on [–L, L]. 

 

 



ENGI 9420 7.02  -  Full Range Fourier Series Page 7.07 

 

Using the results from Example 7.02.1, we can express most real-valued functions  f (x) 

defined on (–L, L), in terms of an infinite series of trigonometric functions: 

 

 

 

The Fourier series of  f (x) on the interval (–L, L) is 

 

  0

1

cos sin
2

n n
n

a n x n x
f x a b

L L

 



     
      

    
  

where 

   
1

cos , 0,1, 2, 3,n

L

L

n x
a f x dx n

L L





 
  

   

and 

   
1

sin , 1, 2, 3,
L

n
L

n x
b f x dx n

L L





 
  

   

 

 

The {an, bn} are the Fourier coefficients of f (x). 

 

Note that the cosine functions (and the function 1) are even, while the sine functions are 

odd.    

 

If  f (x)  is even (f (–x) =  + f (x)  for all x), then bn = 0  for all n, leaving a Fourier cosine 

series (and perhaps a constant term) only for  f (x). 

 

If  f (x)  is odd (f (–x) =  – f (x)  for all x), then an = 0  for all n, leaving a Fourier sine 

series only for  f (x). 
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Example 7.02.2   

 

Expand   
 

 

0 0

0

x
f x

x x



 

  
 

   
  in a Fourier series. 

 

 

L  =  .  

 

 

   0
0

1 1
0a f x dx x dx

 




 
      

 

 
2

0

1

2 2

x


 



 
  

  

 

 

   

   

0

2 2

0

1 1
cos 0 cos

sin cos 1 11

n

n

a f x nx dx x nx dx

n x nx nx

n n

 






 



 


   

    
  

 

 
 

 

 

 

   

 

0

2

0

1 1
sin 0 sin

cos sin1 1

nb f x nx dx x nx dx

n x nx nx

n n

 






 






   

  
  

 

 
 

 

 

 

Therefore the Fourier series for  f (x) is  

 

 
 

 2
1

1 1 1
cos sin

4 n

n

f x nx nx x
n n
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Example 7.02.2    (Additional Notes – also see  

   "www.engr.mun.ca/~ggeorge/9420/demos/") 

The first few partial sums in the Fourier series  

 

 
 

 2

1

1 1 1
cos sin

4
n

n

f x nx nx x
n n


 





  

       
 
 

  

are  

0
4

S


  

1

2
cos sin

4
S x x




    

2

2 1
cos sin sin 2

4 2
S x x x




     

3

2 1 2 1
cos sin sin 2 cos3 sin3

4 2 9 3
S x x x x x



 
       

and so on. 

 

The graphs of successive partial sums approach  f (x)  more closely, except in the vicinity 

of any discontinuities, (where a systematic overshoot occurs, the Gibbs phenomenon). 
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Example 7.02.3    

 

Find the Fourier series expansion for the standard square wave,  

 
 

 

1 1 0

1 0 1

x
f x

x

   
 

   
 

 

 

L = 1. 

 

The function is odd (f (–x) =  – f (x)  for all x). 

Therefore  an = 0  for all n.   We will have a Fourier sine series only. 

 

 

  

0 1

1 0

0 1

1 0

1

1

1
sin sin sin

1

2 1 1cos cos

n

n

b f x n x dx n x dx n x dx

n x n x

n n n

  

 

  






   

    
     
   

  
 

 

 
 

 
1 1

1 12 4 1
sin sin 2 1

2 1
n k

n

f x n x k x
n k

 
 

 

 
    

          
   

 

The graphs of the third and ninth partial sums (containing two and five non-zero terms 

respectively) are displayed here, together with the exact form for  f (x), with a periodic 

extension beyond the interval (–1, +1) that is appropriate for the square wave. 

 

 
 

 3y S x  
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Example 7.02.3   (continued) 

 

 9y S x  

 
 

 

 

 

Convergence   
 

At all points ox x  in (–L, L) where  f (x)  is continuous and is either differentiable or the 

limits  
o

lim
x x

f x


  and  
o

lim
x x

f x


  both exist, the Fourier series converges to f (x). 

 

At finite discontinuities, (where the limits  
o

lim
x x

f x


  and  
o

lim
x x

f x


  both exist), the 

Fourier series converges to 
   o o

2

f x f x  
, 

(using the abbreviations        
o o

o olim and lim
x x x x

f x f x f x f x
  

    ). 

 

 
  f (x) not continuous      continuous but       continuous and 

        at x = xo               not differentiable      differentiable     

In all cases, the Fourier series at  ox x   converges to 
   o o

2

f x f x  
 (the red dot). 
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7.03 Half-Range Fourier Series 

 

A Fourier series for  f (x), valid on [0, L], may be constructed by extension of the domain 

to [–L, L]. 

 

An odd extension leads to a Fourier sine series:  

 
 

 
1

sinn
n

n x
f x b

L






 

  
 

  

where 

   
0

2
sin , 1, 2, 3,

L

n

n x
b f x dx n

L L

 
  

   

 

 

 

An even extension leads to a Fourier cosine series:  

 

  0

1

cos
2

n
n

a n x
f x a

L






 

   
 

  

where 

   
0

2
cos , 0,1, 2, 3,n

L
n x

a f x dx n
L L

 
  

   

and there is automatic continuity of the Fourier cosine series at x = 0 and at x =  L. 
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Example 7.03.1    

 

Find the Fourier sine series and the Fourier cosine series for  f (x) = x  on [0, 1]. 

 

 

f (x) = x  happens to be an odd function of x for any domain centred on x = 0.   The odd 

extension of  f (x)  to the interval  [–1, 1]  is  f (x)  itself. 

 

Evaluating the Fourier sine coefficients,  

 
1

0

2
sin , 1, 2, 3,

1 1
n

n x
b x dx n

 
   

   

 
 

   

1

0

2

11 2
2 cos sin 1n

nx
b n x n x

n nn
 

 

 
      

  

 

Therefore the Fourier sine series for  f (x) = x  on [0, 1] (which is 

also the Fourier series for  f (x) = x  on [–1, 1] ) is  

   
 

1

1 sin
2 1

n

n n x
f x

n









   

or 

 
2 sin 2 sin3 sin 4

sin
2 3 4

x x x
f x x

  




 
     

 
 

 

This function happens to be continuous and differentiable at x = 0, but is clearly 

discontinuous at the endpoints of the interval (x = 1). 

 

Fifth order partial sum of the Fourier sine series for  f (x) = x  on [0, 1] 
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Example 7.03.1   (continued) 

 

The even extension of  f (x)  to the interval  [–1, 1]  is  f (x) = | x |. 

   

Evaluating the Fourier cosine coefficients,  

 

 
1

0

2
cos , 1, 2, 3,

1 1
n

n x
a x dx n

 
  

   

 
 

 

1

0

2

1
2 sin cosn

x
a n x n x

n n
 

 

 
   

  

 

 
  
 

2

2 1 1
n

n

 
  

and 
1

2

0

1

0
0

2
1

1
a x dx x      

 

Evaluating the first few terms,  

0 1 2 3 4 5 62 2 2

4 4 4
1, , 0 , , 0 , , 0 ,

9 25
a a a a a a a

  

  
        

or 

 

 
 

 

2
4

1 0

1,3,5,

0 2,4,6,

n
n

n

a n

n









 

 

 

 

 

Therefore the Fourier cosine series for  f (x) = x  on [0, 1] (which is also the Fourier series 

for  f (x) = | x |  on [–1, 1] ) is  

 
  
 

22

1

cos 2 11 4

2 2 1k

k x
f x

k









 


  

or 

  2

1 4 cos3 cos5 cos7
cos

2 9 25 49

x x x
f x x
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Example 7.03.1   (continued) 

 

 

Third order partial sum of the Fourier cosine series for  f (x) = x  on [0, 1] 

 
Note how rapid the convergence is for the cosine series compared to the sine series. 

 

 3y S x  for cosine series and  5y S x  for sine series for  f (x) = x  on [0, 1] 
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7.04 Frequency Spectrum 

 

The Fourier series may be combined into a single cosine series. 

Let p be the fundamental period.   If the function  f (x)  is not periodic at all on [–L, L], 

then the fundamental period of the extension of  f (x) to the entire real line is 2p L . 

 

Define the fundamental frequency 
2

p L

 
   . 

The Fourier series for f (x) on [–L, L] is, from page 7.07, 

  

      0 0

11

cos sin cos sin
2 2

n n n n

nn

a an x n x
f x a b a n x b n x

L L

 
 



 
    

         
    

  

where 

       
1 1

cos cos , 0,1, 2, 3,n

L L

L L

n x
a f x dx f x n x dx n

L L L




 

 
   

    

and 

       
1 1

sin sin , 1, 2, 3,
L L

n
L L

n x
b f x dx f x n x dx n

L L L




 

 
   

    

 

Let the phase angle n  be such that tan n
n

n

b

a
   ,  

so that sin and cosn n
n n

n n

b a

c c
      

where the amplitude is 2 2

n n nc a b  . 

Also, in the trigonometric identity  cos cos sin sin cosA B A B A B   , 

replace A by n x  and B by n . Then  

 

           cos sin cos cos sin sinn n n n n na n x b n x c n x c n x         

  2 22
cos , where , and tan n

n n n n n n

n

b
c n x c a b

p L a

 
            

 

Therefore the phase angle or harmonic form of the Fourier series is 

 

   0

1

cos
2

n n

n

a
f x c n x 
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Example 7.04.1    

 

Plot the frequency spectrum for the standard square wave,  

 
 

 

1 1 0

1 0 1

x
f x

x

   
 

   
 

 

 

From Example 7.02.3, the Fourier series for the standard square wave is  

 

 
 

 
1 1

1 12 4 1
sin sin 2 1

2 1
n k

n

f x n x k x
n k

 
 

 

 
    

         
   

 

The fundamental frequency is   . 

The absence of cosine terms       
2

0 andn n n na n c b n       . 

The harmonic form of the Fourier series is therefore 

 
 

    
1 1

2 2

1 12 4 1
cos cos 2 1

2 1n k

n

f x n x k x
n k

  
  

     
           

   

The amplitudes are therefore  

 

 

4
odd

0 even

n

n
nc

n
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Example 7.04.2    

 

Plot the frequency spectrum for the periodic extension of   

  , 1 1f x x x     

 

 

 
 

f (x) is even       bn = 0  n      n = 0  n   and  cn =  | an |  n > 0 . 

 
1

2

0 0 0

1 1

1 0

1
2 1

1
c a x dx x dx x



         

For n > 0, 

   
1 1

1 0

1
cos 2 cos

1
na x n x dx x n x dx 



    

   

 

  
 

2 2

1

0

2 1 1sin cos
2

n
n x n x

x
n n n

 

  

  
   

  

 

Therefore  

 
 

 
 2

2 2 2

1

1 11
2 cos

2

1 4 4 4
cos cos3 cos5

2 9 25

n

n

f x n x
n

x x x




  
  




 

 

    


 

(which converges very rapidly, as this third partial sum demonstrates)  
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Example 7.04.2   (continued) 

 

The harmonic amplitudes are 

 

  
 

 

 

 

 
 2

2

11
00

22
0 even, 2

2 1 1
4

odd

n
n

nn

c n n

n
nn

n





     
  

     
  
  
  

 

The frequencies therefore diminish rapidly: 
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7.05 Complex Fourier Series   [for reference only, not examinable] 

 

Note that the Euler identity cos sin
j

e j


    leads to  

cos and sin
2 2

jn x jn x jn x jn x
e e e e

n x n x
j

   

 
 

 
   

The Fourier series for the periodic extension of  f (x) from the original interval [a, a+p) is   

       0

1

cos sin
2

n n

n

a
f x a n x b n x 





   ,  

where 
2

p


   and  

 
       

2 2
cos , sin

a p a p

n n
a a

a f x n x dx b f x n x dx
p p

 
 

    

 

 

The Fourier series becomes  

  0

1
2 2 2

n n

n

jn x jn x jn x jn x
a e e e e

f x a b
j

   



   
   

 
  

0

1
2 2 2

n n n n

n

jn x jn xa a jb a jb
e e

 




      

      
    

  

0

*

1

n n

n

jn x jn x
d d e d e

 




   

   

where 
2

n n
n

a jb
d


  for all non-negative integers n. 

       
1 2 2

cos sin
2 2

a p a p
n n

n
a a

a jb
d f x n x dx j f x n x dx

p p
 

  
   

 
   

       
1 1

cos sin
a p a p

a a

jn x
f x n x j n x dx f x e dx

p p


 

 


       

     * 1 1a p a p

n n
a a

j n xjn x
d f x e dx f x e dx d

p p


 



 
      

 

Therefore the entire Fourier series may be re-written more concisely as  

 

   
1

, wheren n

a p

a
n

jn x jn x
f x d e d f x e dx

p

 
 




    

 

The numbers  { ... , d–2, d–1, d0, d1, d2, ... } are the complex Fourier coefficients of f. 

The harmonic amplitudes of  f  are just the magnitudes { | dn | } for n = 0, 1, 2, ... . 
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Example 7.05.1    

 

Find the complex Fourier series expansion for the standard square wave,  

 
 

 

1 1 0

1 0 1

x
f x

x

   
 

   
 

 

 

2
2

2
p


      

 0

1 0 1

1 1 0

1 1 1 1
1 1 0

2 2 2
d f x dx dx dx

 

  
       

     

For n  0, 

 
1 0 1

1 1 0

1 1

2 2
n

jn x jn x jn x
d f x e dx e dx e dx

  

 

   
     

     

    
0 1

1 0

1
1 1

2 2

jn x jn x
jn jne e j

e e
jn jn n

 
 

  


 


     
          

        

     1 cos 1 1 1
2

jn jn
nj e e j j

n
n n n

 


  

  
          

    

or 

 

 

 

0 even

2
odd

n

n

d j
n

n




 


  

In its most compact form, the complex Fourier series for the square wave is 

 

 
 2 12 1

2 1
k

j k x
f x e

j k










 

  

The amplitude spectrum is the set  
2

, ,nn d n
n

 


 
   
 

, for odd n only. 
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7.06 Fourier Integrals   [for reference only, not examinable] 

 

The Fourier series may be extended from (–L, L) to the entire real line. 

1

1
Let n n n

n

L L L

  
   





         

The Fourier series for  f (x)  on (–L, L) is 

   

 

 

1

1

2

1
cos cos

1
sin sin

L

L

L

Ln

L

L

f x f t dt
L

n t n x
f t dt

L L L

n t n x
f t dt

L L L

 

 









 

     
          

    
          









 

 

   

     

     

1

2

cos cos

sin sin

L

L

L

n n
Ln

L

n n
L

f x f t dt

f t t dt x

f t t dt x






 




 












  

  
  

 

 
   

  









 

 

Now take the limit as  0:L      

The first integral converges to some finite number, so the first term vanishes in the limit. 

The summation becomes an integral over all frequencies in the limit: 

 

     

     

0

0

1
cos cos

1
sin sin

f x

f t t dt x d

f t t dt x d

  


  


 







 

  
  

 

 
  

  

 



 

Therefore the Fourier integral of  f (x)  is 

      
0

cos sinf x A x B x d   


   

where the Fourier integral coefficients are 

       
1 1

cos and sinA f t t dt B f t t dt  
 

 

 

    

provided  f x dx


  converges. 
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Example 7.06.1    

 

Find the Fourier integral of  

 
 

 

1 1 1

0 otherwise

x
f x

   
 


 

 

 

From the functional form and from the graph of  f (x), it is obvious that  f (x) is piecewise 

smooth and that  f x dx


  converges to the value 2. 

 
 

     
 

1
1

1
1

sin1 1 1 2sin
cos cos

t
A f t t dt t dt

 
 

    



 


 
    

    

The function  f (x)  is even       B  =  0  for all . 

 

Therefore the Fourier integral of   f (x)  is  

 

   
0

2sin
cosf x x d


 





   

 

It also follows that  

 

 

 

 
0

1
2

1 1 1
2sin

cos 1

0 otherwise

x

x d x


 



   


  



  

 

Fourier series and Fourier integrals can be used to evaluate summations and definite 

integrals that would otherwise be difficult or impossible to evaluate.   For example, 

setting  x = 0  in Example 7.06.1, we find that  

 

0

sin

2

t
dt

t
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7.07 Complex Fourier Integrals   [for reference only, not examinable] 

 

      
0

cos sinf x A x B x d   


   

0 2 2

j x j x j x j x
e e e e

A B d
j

 

   


    

   
 

  

0 2 2

j x j xA jB A jB
e e d    




      
     

      

 *

0

, where
2

j x j x A jB
C e C e d C  
  

 



 

    

 

 
   

 
   

* cos sin1
But

2

cos sin1

2

t j t
C f t dt

t j t
f t dt C





 



 















  
 




 

   
0

0

and
j x j x

C e d C e d 
 

 


 


 
   

 

By convention, the factor of 
1

2
 is extracted from the coefficients. 

Therefore the complex Fourier integral of  f (t)  is  

 

 
1

2

j t
f t C e dt









   

 

where the complex Fourier integral coefficients are 

 

  j t
C f t e dt







   

 

(which is also the Fourier transform of  f,   f   F [f (t)]() ). 

 

  is the frequency of the signal  f (t). 
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7.08 Some Fourier Transforms   [for reference only, not examinable] 

 

If  f̂   is the Fourier transform of  f (t), then  

 

   ˆ j t
f f t e dt









   

 

and the inverse Fourier transform is  

 

   
1 ˆ

2

j t
f t f e d


 







   

 

 

 

Example 7.08.1    

 

Find the Fourier transform of the pulse function 

      
 

 0 otherwise

k a t a
f t k H t a H t a

  
     


 

 

 

From the functional form and from the graph of  f (t), it is obvious that  f (t) is piecewise 

smooth and that  f t dt


  converges to the value 2ak. 

 

 
 

 

   
 2ˆ

2

a
a

a
a

j a j aj t
j t j t

e ek e k
f f t e dt k e dt

j j

 
 


 



 


 
 

  
     

 
   

Therefore 

 
 sinˆ 2
a

f k
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Example 7.08.1   (continued) 

 

The transform is real.   Therefore the frequency spectrum follows quickly: 
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Example 7.08.2    

 

Find the Fourier transform of the triangle function 

 
   

 0 otherwise

k
a t a t a

f t a


   

 



 

 

 

From the functional form and from the graph of  f (t), it is obvious that  f (t) is piecewise 

smooth and that  f t dt


  converges to the value ak. 

 
 

 

       
0

0

ˆ
a

a

j t j t j tk k
f f t e dt a t e dt a t e dt

a a

  




 

  
      

 

   
2 2

0

0

1 1
a

a

j t j tk a t k a t
e e

a j a jj j

 

  


 
        
         
                

2 2 2 2

1 1 1 1
0 0

j a j ak ja ja
e e

a

 

     

        
               

          

    2 2

2
2 1 cos

j a j ak k
e e a

a a

 


 


    

 
 

Therefore 

 
 

2

1 cos2ˆ ak
f

a







   

 

An equivalent form is  

 

2

sin
2ˆ

2

a

f ak
a
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Example 7.08.2   (continued) 

 

The Fourier transform of the triangle function happens to be real and non-negative, so 

that it is its own frequency spectrum    ˆ ˆf f  . 
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Example 7.08.3    

 

Time Shift Property: 

 

Let        ˆ j t
f f t f t e dt


 






  F . 

Then 

       
 

     

o
o o

o o o ˆ

j u tj t

j t j t j tj u j t

f t t f t t e dt f u e du

e f u e du e f t e dt e f



   





 

 

 

 

 

   

   

  

 

 

F
 

Therefore the time shift property of Fourier transforms is 

 

       o
o

j t
f t t e f t


 


 F F  

 

 

 

 

 

There are many other properties of Fourier transforms to explore, (such as sampling, 

windowing, filtering, Fourier [Co]sine Transforms, discrete Fourier transforms and Fast 

Fourier transforms) and their applications to signal analysis.   However, there is 

insufficient time in this course to proceed beyond this introduction. 
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7.09 Summary of Fourier Transforms   [for reference only, not examinable]  

 

In this table,  a > 0. 

 

 

f (t)      f̂ f t  F  

a t
e


 2 2

2a

a 
 

a t
t e


  

2
2 2

4a j

a








 

a t
t e


 

 

 

2 2

2
2 2

2 a

a








 

 ate H t  
1

a j
 

 
2

at
e


 

2

24ae
a

 

 

Pulse (or gate) 

    k H t a H t a    
 sin

2
a

k



 

Triangle 

   

 0 otherwise

k
a t a t a

a


   





 
 

2

1 cos2 ak

a






  

Time shift 

f (t – to) 
 o ˆj t

e f





 

Scaling 

f (at) 

1
f̂

a a
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Table of Fourier Transforms (continued) 

 

f (t)      f̂ f t  F  

Time Differentiation 

f
 (n)

(t) 
   ˆn

j f   

[provided f continuous] 

 Frequency 

Differentiation 

t
n
 f (t) 

 ˆ
n

n
n

d
j f

d



 

Time Integration 

 
t

f x dx
  

 f̂

j




 

[provided  ˆ 0 0f  ] 

Time Convolution 

f * g 
ˆ ˆf g  

Frequency 

Convolution 

f . g 

ˆ ˆ

2

f g




 

Dirac delta 

 t a   
ja

e


 

2 2

1

t a
 

a
e

a

 
 

2 2

t

t a
 

2

aj
e

a





 

1

t
 j sgn() 

 

Shannon Sampling Theorem 

The entire signal  f (t)  may be reconstructed from the discrete sample at times  

2 2
, , , 0, , ,t

L L L L

    
     
 

: 

 
 sin

n

Lt nn
f t f

L Lt n







 

 
  

 
  

 

 

END OF CHAPTER 7 
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