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1. Ordinary Differential Equations 
 
 An equation involving a function of one independent variable and the 

derivative(s) of that function is an ordinary differential equation (ODE).    
 
 The highest order derivative present determines the order of the ODE and the 

power to which that highest order derivative appears is the degree of the ODE.   A 
general nth order ODE is 

 
( )( ), , , , , 0nF x y y y y′ ′′ =  

Example 1.00.1  
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 + = 
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  is a  

 
Example 1.00.2  
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  = 
 

  is a  

 
In this course we will usually consider first degree ODEs of first or second order only. 
The topics in this chapter are treated briefly, because it is assumed that graduate students 
will have seen this material during their undergraduate years. 
 
 
 
Sections in this Chapter: 
 
1.01 First Order ODEs - Separation of Variables  
1.02 Exact First Order ODEs 
1.03 Integrating Factor 
1.04 First Order Linear ODEs   [ + Integration by Parts] 
1.05 Bernoulli ODEs 
1.06 Second Order Homogeneous Linear ODEs 
1.07 Variation of Parameters 
1.08 Method of Undetermined Coefficients 
1.09 Laplace Transforms 
1.10 Series Solutions of ODEs 
1.11 The Gamma Function 
1.12 Bessel and Legendre ODEs 
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1.01 First Order ODEs - Separation of Variables  
 
Example 1.01.1  
 
A particle falls under gravity from rest through a viscous medium such that the drag force 
is proportional to the square of the speed.   Find the speed  v(t)  at any time  t > 0  and 
find the terminal speed  v∞.  
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Example 1.01.1  (continued) 
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Example 1.01.1  (continued) 
 
General solution:  

( ) ( )1

1
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pt
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−
 

Initial condition:   
 
 
 
 
 
Complete solution: 
 
 
 
 
 
Terminal speed  v∞: 
 

 
 

 
The terminal speed can also be found directly from the ODE. 
At terminal speed, the acceleration is zero, so that the ODE simplifies to  
 
 
 
 
 
Graph of speed against time: 
 

 
[For a 90 kg person in air,  b ≈ 1 kg m−1  →  k   ≈  30 ms−1   ≈  100 km/h. 
v(t)  is approximately linear at first, but air resistance builds quickly. 
One accelerates to within 10 km/h of terminal velocity very fast, in just a few seconds.] 
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1.02 Exact First Order ODEs    
 
If x and y are related implicitly by the equation   u(x, y) = c  (constant), then the chain rule 
for differentiation leads to the ODE 

0u udu dx dy
x y

∂ ∂
= + =

∂ ∂
 

Therefore, for the functions M(x, y) and N(x, y) in the first order ODE   
M dx  +  N dy  =  0 , 

if a potential function  u(x, y) exists such that  

andu uM N
x y

∂ ∂
= =
∂ ∂

, 

then   u(x, y) = c  is the general solution to the ODE and the ODE is said to be exact. 
 
Note that, for nearly all functions of interest, Clairault’s theorem results in the identity 

2 2u u
y x x y
∂ ∂

≡
∂ ∂ ∂ ∂

 

This leads to a simple test to determine whether or not an ODE is exact: 
 

0 is exactM N M dx N dy
y x

∂ ∂
≡ ⇒ + =

∂ ∂
 

 
A separable first order ODE is also exact (after suitable rearrangement). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
However, the converse is false.   One counter-example will suffice.    
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Example 1.02.1 
 
The ODE   
 ( ) 0x xy e x dx e dy− + =   
is exact,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example 1.02.2    
 
Is the ODE    2y dx  +  x dy  =  0    exact? 
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Example 1.02.3    
 
Is the ODE 
 ( )2 1 1 2 22 0n n n nA x y dx x y dy+ + ++ =  

(where  n  is any constant and  A  is any non-zero constant) exact? 
Find the general solution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note that the exact ODE in example 1.02.3 is just the non-exact ODE of example 1.02.2 
multiplied by the factor ( ) 2 1, n nI x y A x y+= .   The ODEs are therefore equivalent and 

share the same general solution.   The function ( ) 2 1, n nI x y A x y+=  is an integrating 
factor for the ODE of example 1.02.2. 
 
Also note that the integrating factor is not unique.   In this case, any two distinct values of 
n generate two distinct integrating factors that both convert the non-exact ODE into an 
exact form.   However, we need to guard against introducing a spurious singular solution 

0.y ≡  
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1.03 Integrating Factor 
 
Occasionally it is possible to transform a non-exact first order ODE into exact form, 
using an integrating factor  I (x, y). 
Suppose that  

P dx  +  Q dy  =  0 
is not exact, but that  

IP dx  +  IQ dy  =  0 
is exact.  
 
Then, using the product rule,  
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Example 1.03.1   (Example 1.02.2 again) 
 
Find the general solution of the ODE  
 2y dx  +  x dy  =  0    
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Example 1.03.2    
 
Find the general solution of the ODE  
 
  2xy dx   +   (2x2 + 3y) dy   =   0  
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1.04 First Order Linear ODEs  [ + Integration by Parts]    
 
A special case of a first order ODE is the linear ODE: 
 

( ) ( )dy P x y R x
dx

+ =  

[or, in some cases,  

( ) ( )ySxyQ
dy
dx

=+  ] 

 
Rearranging the first ODE into standard form,  
 

(P(x) y − R(x)) dx  +  1 dy  =  0 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Therefore the general solution of ( ) ( )xRyxP
dx
dy

=+  is 

( ) ( ) ( ) ( ) ( ) ( ), whereh x h xy x e e R x dx C h x P x dx−  = + = 
  ∫∫  
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Example 1.04.1  
 
Solve the ordinary differential equation  

2 1dy y
dx x

+ =  
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Example 1.04.1  (continued) 
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Examples of Integration by Parts    
 
The method of integration by parts will be required in the next example of a first order 
linear ODE (Example 1.04.4).   There are three main cases for integration by parts: 
 
Example 1.04.2   
 
Integrate  x 3 e x  with respect to x. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example 1.04.3   
 
Integrate  ln x  with respect to x. 
 



ENGI 9420 1.04  Linear ODEs Page 1.15 
 

 

Example 1.04.4    
 
An electrical circuit that contains a resistor, R = 8 Ω (ohm), an inductor, L = 0.02 
millihenry, and an applied emf, E(t) = 2 cos (5t), is governed by the differential equation 

 
Determine the current at any time t > 0, if initially there is a current of 1 ampere in the 
circuit. 

 
First note that the inductance L = 2×10–5 H is very small.   The ODE is therefore not very 
different from 
 0 + R i  =  dE/dt 
which has the immediate solution 
 i  =  (1/R) dE/dt  =  (1/8)×(–10 sin 5t) 
We therefore anticipate that   i = –(5/4) sin 5t   will be a good approximation to the exact 
solution.    
 
Substituting all values (R = 8 ,  L = 2 × 10–5 ,  E = 2 cos 5t  ⇒  E' = –10 sin 5t) into the 
ODE yields  

  
which is a linear first order ODE. 
 
P(t) = 400 000   and   R(t) = –500 000 sin 5t 400000h P dt t⇒ = =∫  

⇒   integrating factor   =   eh   =   e400 000t  

 
Integration by parts of the general case sinaxe bx dx∫  : 
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Example 1.04.4   (continued) 
 

( )2 2

1sin sin cosax axe bx dx e a bx b bx C
a b

 ⇒ = − + +∫  

 
Set   a = 400 000,   b = 5   and   x = t: 

( )2 2
4000001500000 400000sin 5 5cos5

400000 5
h te R dt e t t⇒ = − −

+∫  

The general solution is 
 

( ) ( )h hi t e e R dt C−= +∫  

( ) ( )2
400000 500000 400000sin 5 5cos5

400000 25
ti t A e t t−⇒ = − −

+
 

But   i(0) = 1 

 
⇒ A   =   (400 0002 + 25 – 2 500 000) / (400 0002 + 25) 
 
Therefore the complete solution is [exactly] 
 

( ) ( )400000159997500025 500000 400000sin 5 5cos5
160000000025

te t t
i t

− − −
=  

 
To an excellent approximation, this complete solution is 

( ) 400000 5 sin 5
4

ti t e t−⇒ ≈ −  

After only a few microseconds, the transient term is negligible. 
The complete solution is then, to an excellent approximation, 

 
as before. 
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1.05 Bernoulli ODEs    
 
The first order linear ODE is a special case of the Bernoulli ODE 

( ) ( ) ndy P x y R x y
dx

+ =  

If  n = 0  then the ODE is linear. 
If  n = 1  then the ODE is separable. 

For any other value of  n , the change of variables 
1

1

nyu
n

−
=

−
 will convert the Bernoulli 

ODE for y into a linear ODE for u.  
 

1
1

n ndu du dy n dy dy duy y
dx dy dx n dx dx dx

−−
= = ⇒ =

−
 

The ODE transforms to 

( ) ( ) ( ) ( )1n n ndu duy P x y R x y P x y R x
dx dx

−+ = ⇒ + =  

We therefore obtain the linear ODE for u: 

( ) ( )( ) ( )1du n P x u R x
dx

+ − =  

whose solution is  
 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )
1

, where 1
1

n h x h xy u x e e R x dx C h x n P x dx
n

− −
= = + = −

− ∫ ∫  

 
together with the singular solution 0y ≡  in the cases where  n > 0. 
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Example 1.05.1    
 
Find the general solution of the logistic population model 

2dy a y b y
dx

= −  

where  a, b  are positive constants. 
 
 
The Bernoulli equation is  

( ) ( ) 2dy a y b y
dx

+ − = −  

with  P  =  –a,   R  =  –b,   n  =  2. 
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1.06 Second Order Homogeneous Linear ODEs    
 
The general second order linear ordinary differential equation with constant real 
coefficients may be written in the form 

( )
2

2

d y dyp q y r x
dx dx

+ + =  

 
If, in addition, the right-side function  r(x)  is identically zero, then the ODE is said to be 
homogeneous.   Otherwise it is inhomogeneous. 
 
The most general possible solution  Cy   to the homogeneous ODE  0y p y q y′′ ′+ + =  
is called the complementary function.  
A  solution  Py   to the inhomogeneous ODE  ( )y p y q y r x′′ ′+ + =   is called the 
particular solution. 
The linearity of the ODE leads to the following two properties: 
Any linear combination of two solutions to the homogeneous ODE is another solution to 
the homogeneous ODE; and  
The sum of any solution to the homogeneous ODE and a particular solution is another 
solution to the inhomogeneous ODE. 
 
It can be shown that the following is a valid method for obtaining the complementary 
function: 
 
From the ODE ( )y p y q y r x′′ ′+ + =  form the auxiliary equation (or “characteristic 
equation”) 

2 0p qλ λ+ + =  
If the roots 1 2,λ λ  of this quadratic equation are distinct, then a basis for the entire set of 

possible complementary functions is { } { }1 2
1 2, ,
x x

y y e e
λ λ

= .    

 
If the roots are not real (and therefore form a complex conjugate pair  a ± bj ), then the 
basis can be expressed instead as the equivalent real set { }cos , sinax axe bx e bx . 
 
If the roots are equal (and therefore real), then a basis for the entire set of possible 
complementary functions is { } { }1 2, ,x xy y e x eλ λ= .  

The complementary function, in the form that captures all possibilities, is then 
C 1 2y A y B y= +  

where  A  and  B  are arbitrary constants. 
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Example 1.06.1    
 
A simple unforced mass-spring system (with damping coefficient per unit mass = 6 s–1 
and restoring coefficient per unit mass = 9 s–2) is released from rest at an extension 1 m 
beyond its equilibrium position (s = 0).   Find the position  s(t)  at all subsequent times  t. 
 
 
The simple mass-spring system may be modelled by a second order linear ODE. 

The 
2

2

d s
dt

 term represents the acceleration of the mass, due to the net force. 

The ds
dt

 term represents the friction (damping) term. 

The  s  term represents the restoring force. 
 
The model is 

2

2 6 9 0d s ds s
dt dt

+ + =  
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Example 1.06.1   (continued) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This is an example of critical damping. 
Real distinct roots for λ correspond to over-damping. 
Complex conjugate roots for λ correspond to under-damping (damped oscillations). 

 
Illustrated here are a critically damped case ( ) ( ) 31 3 ts t t e−= +  (the solution to 

Example 1.06.1), an over-damped case ( ) ( )41
3 4 t ts t e e− −= −  and an under-damped 

case ( ) ( )3 1
2cos 6 sin 6ts t e t t−= + , all of which share the same initial conditions 

s(0) = 1  and  ( )0 0s′ = . 
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1.07 Variation of Parameters     
 
A particular solution  Py   to the inhomogeneous ODE  ( )y p y q y r x′′ ′+ + =   may be 

constructed from the set of basis functions { }1 2,y y  for the complementary function by 
varying the parameters:  
 
Try ( ) ( ) ( ) ( ) ( )P 1 2y x u x y x v x y x= + , where the functions u(x) and v(x) are such that  

  (i)  Py   is a solution of ( )y p y q y r x′′ ′+ + =    and 
 (ii) one free constraint is imposed, to ease the search for  u(x) and v(x). 
 
Substituting  P 1 2y u y v y= +   into the ODE,  
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[space to continue the derivation of the method of variation of parameters] 
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Example 1.07.1    
 
A mass spring system is at rest until the instant   t = 3, when a sudden hammer blow, of 
impulse 10 Ns, sets the system into motion.   No further external force is applied to the 
system, which has a mass of 1 kg, a restoring force coefficient of 26 kg s–2 and a friction 
coefficient of 2 kg s–1.   The response  x(t)  at any time  t > 0  is governed by the 
differential equation 

( )
2

2 2 26 10 3d x d x x t
dt dt

δ+ + = −  

(where   δ (t – a)   is the Dirac delta function), 
together with the initial conditions     x(0) = x' (0) = 0. 
Find the complete solution to this initial value problem. 
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Example 1.07.1   (continued) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This complete solution is continuous at   t = 3. 
It is not differentiable at   t = 3, because of the infinite discontinuity of the Dirac delta 
function inside  r(t)  at   t = 3. 

 
  

Note: ( ) ( )
0

lim ; ,t a g t a
ε

δ ε
→

− =    ( ) ( )
( )

0
1

t a
H t a

t a
<− =  ≥

 

 
[Total area = 1]   
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Example 1.07.2    
 
Find the general solution of the ODE    y"  +  2y'  −  3y  =  x2  +  e2x  . 
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Example 1.07.2   (continued) 
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1.08 Method of Undetermined Coefficients     
 
When trying to find the particular solution of the inhomogeneous ODE  

( )
2

2

d y dyp q y r x
dx dx

+ + =  

an alternative method to variation of parameters is available only when  ( )r x   is one of 
the following special types:  

1
, cos , sin , k

k
k

n
k xe kx kx a x

=
∑  and any linear combinations of these types and any 

products of these types.   When it is available, this method is often faster than the method 
of  variation of parameters. 
 
The method involves the substitution of a form for Py  that resembles ( )r x , with 
coefficients yet to be determined, into the ODE.    
If ( ) k xr x c e= , then try P

k xy d e= , with the coefficient d to be determined. 

If ( ) cos or sinr x a kx b kx= , then try P cos siny c kx d kx= + , with the coefficients c 
and d to be determined. 
If  ( )r x   is an nth order polynomial function of x, then set  Py   equal to an nth order 
polynomial function of x, with all (n + 1) coefficients to be determined. 
 
However, if  ( )r x   contains a constant multiple of either part of the complementary 

function ( )1 2ory y , then that part must be multiplied by x in the trial function for  Py . 
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Example 1.08.1   (Example 1.07.2  again) 
 
Find the general solution of the ODE    y"  +  2y'  −  3y  =  x2  +  e2x  . 
 
 
A.E.: λ 2  +  2λ  −  3  =  0 
 
⇒ (λ + 3) (λ − 1)  =  0    ⇒   λ  =  −3, 1 
 
C.F.: C

3x xy A e B e−= +   
 
Particular Solution by Undetermined Coefficients: 
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Example 1.08.2    
 
Find the general solution of the ODE  

2

2
24 4 xd y dy y e

dx dx
−+ + =  
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1.09 Laplace Transforms    
 
Laplace transforms can convert some initial value problems into algebra problems.   It is 
assumed here that students have met Laplace transforms before.   Only the key results are 
displayed here, before they are employed to solve some initial value problems. 
 
The Laplace transform of a function  f (t)  is the integral  
 

( ) ( ){ } ( )
0

stF s f t e f t dt
∞

−= = ∫L  

where the integral exists. 
 
Some standard transforms and properties are: 
 
Linearity:  

( ) ( ){ } ( ){ } ( ){ } ( ), constantsa f t b g t a f t b g t a b+ = + =L L L  
 
Polynomial functions: 

{ } ( )
1

1

1
! 1

1 !

n
n

nn
n tt

s ns
−

−

+
 = ⇒ =  − 

L L  

 
First Shift Theorem:  

( ){ } ( ) ( ){ } ( )atf t F s e f t F s a= ⇒ = −L L  

( ) ( )
1 1

11 1and
1 !

n at
at

n
t ee

s a ns a
− −

−   ⇒ = =   − −  −  
L L  

 
Trigonometric Functions:  

{ }
( ) ( )

1
2 22 2

1 sinsin
at

at e te t
s a s a

ω ωω
ωω ω

−
  = ⇒ = 

− + − +  
L L  

{ }
( ) ( )

1
2 22 2

cos cosat ats a s ae t e t
s a s a

ω ω
ω ω

−
 − − = ⇒ = 

− + − +  
L L  

 
 
Derivatives: 

( ){ } ( ){ } ( )0f t s f t f′ = −L L  

( ){ } ( ){ } ( ) ( )2 0 0f t s f t s f f′′ ′= − −L L  
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Integration: 

( ) ( ){ }1 1

0

1 t
G s G s d

s
τ− −  = 

  ∫L L  

( ){ } ( ){ }d f t t f t
ds

= −L L    ⇒   ( ){ } ( ){ }1 1F s t F s− −′ = − ⋅L L  

 
Second shift theorem: 
 

( ){ } ( ) ( ){ } ( ) ( )1 1 asF s f t e F s H t a f t a− − −= ⇒ = − −L L  

 

where ( ) ( )
( )

0
1

t a
H t a

t a
<− =  ≥

 is the Heaviside (unit step) function. 

 
Dirac delta function 

( ){ } ast a eδ −− =L  

where ( ) ( ) ( ) ( )
( )

if
0 or

d

c

f a c a d
f t t a dt

a c a d
δ

< <− =  < >∫ . 

 
For a periodic function  f (t) with fundamental period p,  
 

( ){ } ( )
0

1
1

p
st

p sf t e f t dt
e

−
−=

− ∫L  

 
Convolution: 

( ) ( ){ } ( ){ } ( ){ }1 1 1F s G s F s G s− − −= ∗L L L  
where (f * g)(t) denotes the convolution of f (t) and g(t) and is defined by 

( )( ) ( ) ( )
0

t
f g t f g t dτ τ τ∗ = −∫  

The identity function for convolution is the Dirac delta function: 
( ) ( ) ( ) ( ) ( ) ( ) ( )t a f t f t a H t a t f t f tδ δ− ∗ = − − ⇒ ∗ =  
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Here is a summary of inverse Laplace transforms. 
 

 
 F (s)   f (t)  
 

( )
0

ste f t dt
∞

−∫   f (t)       

 
 
 (n ∈ ù)   
 
 
  
 
 

 
          eat 
 

 
(n ∈ ù)     
 
 

 
     e−as           δ (t − a) 
 

 
     H (t − a) 
 

 
 

   
 

 
 
 
 
 
 
 
 
 
 

 
 
 

 
 F (s)   f (t)  
 

 
 
 
 
 
 
 

 

 
 
 
 
 
 t  cos ω t 
 
              
 Square wave, 
          period  2a ,  
          amplitude 1 

 
         Triangular wave, 
          period  2a ,  
          amplitude a 

 
    Sawtooth wave,  
       period  a , 
       amplitude b  

 
{ sn F (s)  −  sn−1 f (0)  
−  sn−2 f N(0) −  sn−3 f O(0) 
− ...      
− s f (n−2) (0) −  f (n−1) (0) } 
 
 
  
  
          − t  f (t)

ns
1

s
1

tπ
1

as −
1

( )nas −
1

!)1(

1

−

−

n
et atn

s
e as−

22
1
ω+s ω

ω tsin

( ) 22
1

ω+− as ω
ω teat sin

( ) 22
1

bas −− b
bteat sinh

( ) !1

1

−

−

n
tn

( )
( ) 22 ω+−

−

as
as

teat ωcos

( )
( ) 22 bas

as
−−

− bteat cosh

( )22
1
ω+ss 2

cos1
ω

ω t−

( )222
1

ω+ss 3
sin
ω

ωω tt −

( ) 222

1

ω+s 32
cossin

ω
ωωω ttt −

( ) 222 ω+s

s

ω
ω

2
sin tt

( ) 222

22

ω

ω

+

−

s

s

n

n

dt
fd

ds
dF

)(1 sF
s









2
tanh1 as

s









2
tanh1

2
as

s

( )12 −
− ases

b
as
b

∫
t

df
0

)( ττ
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Example 1.09.1   (Example 1.08.2  again) 
 
Find the general solution of the ODE  

2

2
24 4 xd y dy y e

dx dx
−+ + =  

 
 
The initial conditions are unknown, so let  a = y(0)  and  b = y' (0). 
Taking the Laplace transform of the initial value problem,  
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Example 1.09.2   (Example 1.07.1  again) 
 
Find the complete solution to the initial value problem 

( )
2

2 2 26 10 3d x d x x t
dt dt

δ+ + = −  

(where   δ (t – a)   is the Dirac delta function), 
together with the initial conditions     x(0) = x' (0) = 0. 
 
 
Let   X(s)  =  L {x(t)}  be the Laplace transform of the solution  x(t). 
Taking the Laplace transform of the initial value problem,  
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1.10 Series Solutions of ODEs    
 
If the functions  p(x) ,  q(x)  and  r(x) in the ODE 

( ) ( ) ( )
2

2

d y dyp x q x y r x
dx dx

+ + =  

are all analytic in some interval o ox h x x h− < < +  (and therefore possess Taylor series 
expansions around ox  with radii of convergence of at least h), then a series solution to the 
ODE around  ox  with a radius of convergence of at least h exists: 

( ) ( )
( ) ( )o

o
0

,
!n n

n

n
n y x

y x a x x a
n

∞

=
= − =∑  

 
 
Example 1.10.1    
 
Find a series solution as far as the term in x3, to the initial value problem 

( ) ( )
2

2 4 ; 0 1, 0 4xd y dyx e y y y
dx dx

′− + = = =  

 
 
None of our previous methods apply to this problem. 
The functions  –x,  ex  and  4  are all analytic everywhere. 
 
The solution of this ODE, expressed as a power series, is 

( ) ( ) ( ) ( ) ( )2 30 0
0 0

2! 3!
y y

y x y y x x x
′′ ′′′

′= + + + +  

But   y(0) = 1  and  y'(0) = 4 . 
From the ODE,  
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Example 1.10.2    
 
Find the general solution (as a power series about x = 0) to the ordinary differential 
equation 

2
2

2 0d y x y
dx

+ =  

 
 

Let the general solution be ( )
0

n
n

ny x a x
∞

=
= ∑ . 

Then ( ) ( ) ( )
1 2

1 2and 1n n
n n

n ny x n a x y x n n a x
∞ ∞

= =

− −′ ′′= = −∑ ∑ . 

Substitute into the ODE: 
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1.11 The Gamma Function 
 
The gamma function  ( )xΓ   is a special function that will be needed in the solution of 

Bessel’s ODE.     ( )xΓ  is a generalisation of the factorial function  n !  from positive 
integers to most real numbers.   For any positive integer  n,  

( ) ( )! 1 2 3 2 1n n n n= × − × − × × × ×    (with  0!  defined to be 1) 
 
When  x  is a positive integer  n,   ( ) ( )1 !n nΓ = −  
 
We know that ( )! 1 !n n n= × −  

The gamma function has a similar recurrence relationship:   ( ) ( )1x x xΓ + = ⋅Γ  

This allows  ( )xΓ  to be defined for non-integer negative  x , using  ( ) ( )1x
x

x
Γ +

Γ =  

For example, 
it can be shown that  ( )1

2 πΓ =  

( ) ( )1
21

2 1
2

2 π
Γ +

⇒ Γ − = = −
−

    ( ) ( )1
23

2 3
2

4
3
πΓ −

⇒ Γ − = = +
−

, etc. 

 
( )xΓ  is infinite when  x  is a negative 

integer or zero.   It is well defined for all 
other real numbers  x. 
 
 
In this graph of ( )y x= Γ , 
values of the factorial function  
(at positive integer values of  x)  
are highlighted. 
 
 
 
 
There are several ways to define the gamma function, such as  
 

( ) ( )
0

1 0x tx t e dt x
∞ − −Γ = >∫  

and 

( ) ( ) ( )
!lim

1

x

n
n nx

x x x n→∞
Γ =

+ +
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A related special function is the beta function: 
 

( ) ( ) ( ) ( )
( )

1 /2

0 0

11 2 1 2 1, 1 2 sin cosnm m n m n
B m n t t dt d

m n

π
θ θ θ−− − − Γ Γ

= − = =
Γ +∫ ∫  

 
 
Among the many results involving the gamma function are: 
 
For the closed region  V  in the first octant, bounded by the coordinate planes and the 

surface    1x y z
a b c

α β γ
     + + =     
     

,  with all constants positive,  

( ) ( ) ( )
( )

1 1 1

1V

p q rp q r
p q r

p q r
a b cI x y z dx dy dz

α γβ

α γβ
αβγ

− − −
Γ Γ Γ

= = ⋅
Γ + + +∫∫∫  

 
For the closed area  A  in the first quadrant, bounded by the coordinate axes and the curve  

 1x y
a b

α β
   + =   
   

,  with all constants positive,  

( ) ( )
( )

1 1

1A

p qp q
p q

p q
a bI x y dx dy

α β

α β
αβ

− −
Γ Γ

= = ⋅
Γ + +∫∫  

 
 
Example 1.11.1 
 
Establish the formula for the area enclosed by an ellipse. 
 

The Cartesian equation of a standard ellipse is 
2 2

1x y
a b

   + =   
   

. 
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1.12  Bessel and Legendre ODEs 
 
Frobenius Series Solution of an ODE 
 
If the ODE  

( ) ( ) ( ) ( )P x y Q x y R x y F x′′ ′+ + =  

is such that ( )o 0P x = , but ( ) ( )
( ) ( ) ( )

( )
( )
( )o o

2, and
Q x R x F x

x x x x
P x P x P x

− −  are all 

analytic at  xo , then  x = xo  is a regular singular point of the ODE. 
 
A Frobenius series solution of the ODE about  ox x=   exists: 

( ) ( )o
0n

n
n ry x c x x

∞

=

+= −∑  

for some real number(s)  r  and for some set of values { }nc . 
 
 
Example 1.12.1    
 
Find a solution of Bessel’s ordinary differential equation of order ν, (ν > 0),  
  

( )2 2 2 0x y x y x yν′′ ′+ + − =  
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Example 1.12.1   (continued) 
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Example 1.12.1   (continued) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
One Frobenius solution of Bessel’s equation of order ν is therefore  
 

( ) ( ) ( )
( ) ( ) ( )20 0

0

21
1 1

2 ! 1k

k

k

ky x c x c J x
k k

ν
νν ν

ν=

∞
+−

= Γ + = Γ +
Γ + +∑  

 
where  ( )J xν  is the Bessel function of the first kind of order ν. 
 
It turns out that the Frobenius series found by setting  r = –ν  generates a second linearly 
independent solution   J–ν(x)  of the Bessel equation only if  ν  is not an integer. 
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The Bessel ODE in standard form,  
( )2 2 2 0x y x y x yν′′ ′+ + − =  

has the general solution  
( ) ( ) ( )y x A J x B Y xν ν= +  

unless  ν   is not an integer, in which case  ( )Y xν   can be replaced by  ( )J xν−  . 

( )Y xν   is the Bessel function of the second kind. 

When  ν   is an integer, ( ) ( ) ( )1J x J xν
ν ν− = − . 

 
Graphs of Bessel functions of the first kind, for  0,1, 2ν = : 

 
 
The series expression for the Bessel function of the first kind is  

( ) ( )
( )0

21
! 1 2

k

k

kxJ x
k k

ν

ν ν=

∞ +−  =  Γ + +  ∑  

This function has a simpler form when  ν   is an odd half-integer.   For example, 

( ) ( )1/2 1/2
2 2sin , cosJ x x J x x
x xπ π−= =  
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The Bessel function of the second kind is 

( ) ( ) ( ) ( )
( )

cos
sin

J x J x
Y x ν ν
ν

νπ
νπ

−−
=  

( )Y xν   is unbounded as 0x → :   ( )
0

lim
x

Y xν+→
= −∞  

Bessel functions of the second kind (all of which have a singularity at  x = 0): 

 
 
 
Bessel functions arise frequently in situations where cylindrical or spherical polar 
coordinates are used. 
 
A generalised Bessel ODE is  

( ) ( )( )
2

2
2 2 2 2 2 2 21 2 0cd y dyx a x b c x a c y

dx dx
ν+ − + + − =  

whose general solution is 
( ) ( ) ( )( )a c cy x x A J bx B Y bxν ν= +  

 
For a generalised Bessel ODE with  0a ≥ , whenever the solution  must remain bounded 
as  0x → , the general solution simplifies to    ( ) ( )a cy x A x J bxν= . 
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Example 1.12.2   
 
Find a Maclaurin series solution to Legendre’s ODE 

( ) ( )
2

2
21 2 1 0d y dyx x p p y

dx dx
− − + + =  

in the case when  p  is a non-negative integer. 
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Example 1.12.2  (continued) 
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If we set  1 0a =  when  p  is even, then the series solution terminates as a pth order 
polynomial (and therefore converges for all  x). 
 
If we set  0 0a =  when  p  is odd, then the series solution terminates as a pth order 
polynomial (and therefore converges for all  x). 
 
With suitable choices of 0a  and 1a , so that ( )1 1nP = ,  
we have the set of Legendre polynomials: 

( )0 1P x = ,  ( )1P x x= ,   ( ) ( )2
2

1
2 3 1P x x= − ,  

( ) ( )3
3

1
2 5 3P x x x= − ,  ( ) ( )4 2

4
1
8 35 30 3P x x x= − + ,  ( ) ( )5 3

5
1
8 63 70 15P x x x x= − + ,  

( ) ( )6 4 2
6

1
16 231 315 105 5P x x x x= − + − , etc. 

Each  ( )nP x   is a solution of Legendre’s ODE with  p = n. 
 
Rodrigues’ formula generates all of the Legendre polynomials: 
 

( ) ( )( )21 1
2 !

n n
n n n

dP x x
n dx

= −  

 
Among the properties of Legendre polynomials is their orthogonality on [–1, 1]:  
 

( ) ( )
( )

( )
1

1

0
2

2 1
m n

m n
P x P x dx

m n
n

+

−

 ≠
= 

= +
∫  
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 END OF CHAPTER 1 

[Space for any additional notes] 
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