5. The Gradient Operator

A brief review is provided here for the gradient operator $\vec{\nabla}$ in both Cartesian and orthogonal non-Cartesian coordinate systems.

Sections in this Chapter:

5.01 Gradient, Divergence, Curl and Laplacian (Cartesian)
5.02 Differentiation in Orthogonal Curvilinear Coordinate Systems
5.03 Summary Table for the Gradient Operator
5.04 Derivatives of Basis Vectors

5.01 Gradient, Divergence, Curl and Laplacian (Cartesian)

Let z be a function of two independent variables (x, y), so that $z=f(x, y)$.
The function $z=f(x, y)$ defines a surface in \mathbb{R}^{3}.
At any point (x, y) in the $x-y$ plane, the direction in which one must travel in order to experience the greatest possible rate of increase in z at that point is the direction of the gradient vector,

$$
\vec{\nabla} f=\frac{\partial f}{\partial x} \hat{\mathbf{i}}+\frac{\partial f}{\partial y} \hat{\mathbf{j}}
$$

The magnitude of the gradient vector is that greatest possible rate of increase in z at that point. The gradient vector is not constant everywhere, unless the surface is a plane. (The symbol $\vec{\nabla}$ is usually pronounced "del").

The concept of the gradient vector can be extended to functions of any number of variables. If $u=f(x, y, z, t)$, then $\vec{\nabla} f=\left[\frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \frac{\partial f}{\partial z} \frac{\partial f}{\partial t}\right]^{\mathrm{T}}$.

If \mathbf{v} is a function of position \mathbf{r} and time t, while position is in turn a function of time, then by the chain rule of differentiation,
$\frac{d \stackrel{\rightharpoonup}{\mathbf{v}}}{d t}=$

which is of use in the study of fluid dynamics.

The gradient operator can also be applied to vectors via the scalar (dot) and vector (cross) products:

The divergence of a vector field $\mathbf{F}(x, y, z)$ is

$$
\operatorname{div} \overrightarrow{\mathbf{F}}=\vec{\nabla} \cdot \overrightarrow{\mathbf{F}}=\left[\begin{array}{lll}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}
\end{array}\right]^{\mathrm{T}} \cdot\left[\begin{array}{lll}
F_{1} & F_{2} & F_{3}
\end{array}\right]^{\mathrm{T}}=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}
$$

A region free of sources and sinks will have zero divergence: the total flux into any region is balanced by the total flux out from that region.

The curl of a vector field $\mathbf{F}(x, y, z)$ is

$$
\operatorname{curl} \overrightarrow{\mathbf{F}}=\vec{\nabla} \times \overrightarrow{\mathbf{F}}=\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \frac{\partial}{\partial x} & F_{1} \\
\hat{\mathbf{j}} & \frac{\partial}{\partial y} & F_{2} \\
\hat{\mathbf{k}} & \frac{\partial}{\partial z} & F_{3}
\end{array}\right|=\left[\begin{array}{l}
\frac{\partial F_{3}}{\partial y}-\frac{\partial F_{2}}{\partial z} \\
\frac{\partial F_{1}}{\partial z}-\frac{\partial F_{3}}{\partial x} \\
\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}
\end{array}\right]
$$

In an irrotational field, curl $\overrightarrow{\mathbf{F}}=\overrightarrow{\mathbf{0}}$.
Whenever $\stackrel{\rightharpoonup}{\mathbf{F}}=\stackrel{\rightharpoonup}{\nabla} \phi$ for some twice differentiable potential function ϕ, curl $\overrightarrow{\mathbf{F}}=\overrightarrow{\mathbf{0}}$ or

$$
\operatorname{curl}(\operatorname{grad} \phi) \equiv \stackrel{\rightharpoonup}{\nabla} \times \stackrel{\rightharpoonup}{\nabla} \phi \equiv \overrightarrow{\mathbf{0}}
$$

Proof:
$\stackrel{\rightharpoonup}{\mathbf{F}}=\vec{\nabla} \phi=\left[\begin{array}{lll}F_{1} & F_{2} & F_{3}\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{lll}\frac{\partial \phi}{\partial x} & \frac{\partial \phi}{\partial y} & \frac{\partial \phi}{\partial z}\end{array}\right]^{\mathrm{T}}$
$\Rightarrow \operatorname{curl} \vec{\nabla} \phi=$

Among many identities involving the gradient operator is

$$
\operatorname{div}(\operatorname{curl} \stackrel{\rightharpoonup}{\mathbf{F}}) \equiv \stackrel{\rightharpoonup}{\nabla} \cdot \stackrel{\rightharpoonup}{\nabla} \times \stackrel{\rightharpoonup}{\mathbf{F}} \equiv 0
$$

for all twice-differentiable vector functions $\overrightarrow{\mathbf{F}}$
Proof:
$\operatorname{div} \operatorname{curl} \overrightarrow{\mathbf{F}}=$

The divergence of the gradient of a scalar function is the Laplacian:

$$
\operatorname{div}(\operatorname{grad} f) \equiv \vec{\nabla} \cdot \vec{\nabla} f \equiv \nabla^{2} f \equiv \frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}
$$

for all twice-differentiable scalar functions f.

In orthogonal non-Cartesian coordinate systems, the expressions for the gradient operator are not as simple.

5.02 Differentiation in Orthogonal Curvilinear Coordinate Systems

For any orthogonal curvilinear coordinate system $\left(u_{1}, u_{2}, u_{3}\right)$ in \mathbb{R}^{3}, the unit tangent vectors along the curvilinear axes are $\hat{\mathbf{e}}_{i}=\hat{\mathbf{T}}_{i}=\frac{1}{h_{i}} \frac{\partial \overrightarrow{\mathbf{r}}}{\partial u_{i}}$, where the scale factors $h_{i}=\left|\frac{\partial \overrightarrow{\mathbf{r}}}{\partial u_{i}}\right|$.

The displacement vector $\overrightarrow{\mathbf{r}}$ can then be written as $\overrightarrow{\mathbf{r}}=u_{1} \hat{\mathbf{e}}_{1}+u_{2} \hat{\mathbf{e}}_{2}+u_{3} \hat{\mathbf{e}}_{3}$, where the unit vectors $\hat{\mathbf{e}}_{i}$ form an orthonormal basis for \mathbb{R}^{3}.

$$
\hat{\mathbf{e}}_{i} \cdot \hat{\mathbf{e}}_{j}=\delta_{i j}= \begin{cases}0 & (i \neq j) \\ 1 & (i=j)\end{cases}
$$

The differential displacement vector $\mathbf{d r}$ is (by the Chain Rule)

$$
\mathbf{d} \overrightarrow{\mathbf{r}}=\frac{\partial \stackrel{\mathbf{r}}{\mathbf{r}}}{\partial u_{1}} d u_{1}+\frac{\partial \stackrel{\rightharpoonup}{\mathbf{r}}}{\partial u_{2}} d u_{2}+\frac{\partial \stackrel{\rightharpoonup}{\mathbf{r}}}{\partial u_{3}} d u_{3}=h_{1} d u_{1} \hat{\mathbf{e}}_{1}+h_{2} d u_{2} \hat{\mathbf{e}}_{2}+h_{3} d u_{3} \hat{\mathbf{e}}_{3}
$$

and the differential arc length $d s$ is given by

$$
d s^{2}=\mathbf{d} \overrightarrow{\mathbf{r}} \cdot \mathbf{d} \overrightarrow{\mathbf{r}}=\left(h_{1} d u_{1}\right)^{2}+\left(h_{2} d u_{2}\right)^{2}+\left(h_{3} d u_{3}\right)^{2}
$$

The element of volume $d V$ is

$$
\begin{aligned}
d V=h_{1} h_{2} h_{3} d u_{1} d u_{2} d u_{3} & =\underbrace{\left.\frac{\partial(x, y, z)}{\partial\left(u_{1}, u_{2}, u_{3}\right)} \right\rvert\,}_{\text {Jacobian }} d u_{1} d u_{2} d u_{3} \\
& =\left|\begin{array}{ccc}
\frac{\partial x}{\partial u_{1}} & \frac{\partial y}{\partial u_{1}} & \frac{\partial z}{\partial u_{1}} \\
\frac{\partial x}{\partial u_{2}} & \frac{\partial y}{\partial u_{2}} & \frac{\partial z}{\partial u_{2}} \\
\frac{\partial x}{\partial u_{3}} & \frac{\partial y}{\partial u_{3}} & \frac{\partial z}{\partial u_{3}}
\end{array}\right| d u_{1} d u_{2} d u_{3}
\end{aligned}
$$

Example 5.02.1: Find the scale factor h_{θ} for the spherical polar coordinate system $(x, y, z)=(r \sin \theta \cos \phi, r \sin \theta \sin \phi, r \cos \theta):$

5.03 Summary Table for the Gradient Operator

Gradient operator

$$
\vec{\nabla}=\frac{\hat{\mathbf{e}}_{1}}{h_{1}} \frac{\partial}{\partial u_{1}}+\frac{\hat{\mathbf{e}}_{2}}{h_{2}} \frac{\partial}{\partial u_{2}}+\frac{\hat{\mathbf{e}}_{3}}{h_{3}} \frac{\partial}{\partial u_{3}}
$$

Gradient

$$
\bar{\nabla} V=\frac{\hat{\mathbf{e}}_{1}}{h_{1}} \frac{\partial V}{\partial u_{1}}+\frac{\hat{\mathbf{e}}_{2}}{h_{2}} \frac{\partial V}{\partial u_{2}}+\frac{\hat{\mathbf{e}}_{3}}{h_{3}} \frac{\partial V}{\partial u_{3}}
$$

Divergence

$$
\vec{\nabla} \bullet \overrightarrow{\mathbf{F}}=\frac{1}{h_{1} h_{2} h_{3}}\left(\frac{\partial\left(h_{2} h_{3} F_{1}\right)}{\partial u_{1}}+\frac{\partial\left(h_{3} h_{1} F_{2}\right)}{\partial u_{2}}+\frac{\partial\left(h_{1} h_{2} F_{3}\right)}{\partial u_{3}}\right)
$$

Curl

$$
\stackrel{\rightharpoonup}{\nabla} \times \stackrel{\rightharpoonup}{\mathbf{F}}=\frac{1}{h_{1} h_{2} h_{3}}\left|\begin{array}{ccc}
h_{1} \hat{\mathbf{e}}_{1} & \frac{\partial}{\partial u_{1}} & h_{1} F_{1} \\
h_{2} \hat{\mathbf{e}}_{2} & \frac{\partial}{\partial u_{2}} & h_{2} F_{2} \\
h_{3} \hat{\mathbf{e}}_{3} & \frac{\partial}{\partial u_{3}} & h_{3} F_{3}
\end{array}\right|
$$

Laplacian $\quad \nabla^{2} V=\frac{1}{h_{1} h_{2} h_{3}}\left(\frac{\partial}{\partial u_{1}}\left(\frac{h_{2} h_{3}}{h_{1}} \frac{\partial V}{\partial u_{1}}\right)+\frac{\partial}{\partial u_{2}}\left(\frac{h_{3} h_{1}}{h_{2}} \frac{\partial V}{\partial u_{2}}\right)+\frac{\partial}{\partial u_{3}}\left(\frac{h_{1} h_{2}}{h_{3}} \frac{\partial V}{\partial u_{3}}\right)\right)$

Scale factors:
Cartesian:

$$
h_{x}=h_{y}=h_{z}=1
$$

Cylindrical polar: $\quad h_{\rho}=h_{z}=1, h_{\phi}=\rho$.
Spherical polar: $\quad h_{r}=1, h_{\theta}=r, h_{\phi}=r \sin \theta$.

Example 5.03.1: \quad The Laplacian of V in spherical polars is
$\nabla^{2} V=$

Example 5.03.2

A potential function $V(\overrightarrow{\mathbf{r}})$ is spherically symmetric, (that is, its value depends only on the distance r from the origin), due solely to a point source at the origin. There are no other sources or sinks anywhere in \mathbb{R}^{3}. Deduce the functional form of $V(\overrightarrow{\mathbf{r}})$.

5.04 Derivatives of Basis Vectors

Cartesian: $\quad \frac{d}{d t} \hat{\mathbf{i}}=\frac{d}{d t} \hat{\mathbf{j}}=\frac{d}{d t} \hat{\mathbf{k}}=\overrightarrow{\mathbf{0}}$

$$
\begin{aligned}
\overrightarrow{\mathbf{r}} & =x \hat{\mathbf{i}}+y \hat{\mathbf{j}}+z \hat{\mathbf{k}} \\
\Rightarrow \quad \overrightarrow{\mathbf{v}} & =\dot{x} \hat{\mathbf{i}}+\dot{y} \hat{\mathbf{j}}+\dot{z} \hat{\mathbf{k}}
\end{aligned}
$$

Cylindrical Polar Coordinates:

$x=\rho \cos \phi, \quad y=\rho \sin \phi, \quad z=z$

$$
\begin{aligned}
& \frac{d}{d t} \hat{\boldsymbol{\rho}}=\frac{d \phi}{d t} \hat{\boldsymbol{\phi}} \\
& \frac{d}{d t} \hat{\boldsymbol{\phi}}=-\frac{d \phi}{d t} \hat{\boldsymbol{\rho}} \\
& \frac{d}{d t} \hat{\mathbf{k}}=\overrightarrow{\mathbf{0}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{r}=\rho \hat{\rho}+z \hat{\mathbf{k}} \\
& \Rightarrow \quad \overrightarrow{\mathbf{v}}=\dot{\rho} \hat{\rho}+\rho \dot{\phi} \hat{\phi}+\dot{z} \hat{\mathbf{k}}
\end{aligned}
$$

[radial and transverse components of $\overrightarrow{\mathbf{v}}$]

Spherical Polar Coordinates.

The "declination" angle θ is the angle between the positive z axis and the radius vector $\overrightarrow{\mathbf{r}} . \quad 0 \leq \theta \leq \pi$.

The "azimuth" angle ϕ is the angle on the $x-y$ plane, measured anticlockwise from the positive x axis, of the shadow of the radius vector. $0 \leq \phi<2 \pi$.

$$
z=r \cos \theta
$$

The shadow of the radius vector on the $x-y$ plane has length $r \sin \theta$.

It then follows that

$$
\begin{aligned}
& x=r \sin \theta \cos \phi \quad \text { and } \quad y=r \sin \theta \sin \phi \\
& \begin{array}{l}
\frac{d}{d t} \hat{\mathbf{r}}=\frac{d \theta}{d t} \hat{\boldsymbol{\theta}}+\frac{d \phi}{d t} \sin \theta \hat{\boldsymbol{\phi}} \\
\frac{d}{d t} \hat{\boldsymbol{\theta}}=-\frac{d \theta}{d t} \hat{\mathbf{r}}+\frac{d \phi}{d t} \cos \theta \hat{\boldsymbol{\phi}} \\
\frac{d}{d t} \hat{\boldsymbol{\phi}}=-\frac{d \phi}{d t}(\sin \theta \hat{\mathbf{r}}+\cos \theta \hat{\boldsymbol{\theta}})
\end{array} \quad \Rightarrow \mathrm{l}
\end{aligned}
$$

Example 5.04.1

Find the velocity and acceleration in cylindrical polar coordinates for a particle travelling along the helix $x=3 \cos 2 t, y=3 \sin 2 t, z=t$.

Other examples are in the problem sets.

