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7. Fourier Series and Fourier Transforms

Fourier series have multiple purposes, including the provision of series solutions to some
linear partial differential equations with boundary conditions (as will be reviewed in
Chapter 8). Fourier transforms are often used to extract frequency information from
time series data. For lack of time in this course, only a brief introduction is provided
here.

Sections in this Chapter:

7.01 Orthogonal Functions

7.02 Definitions of Fourier Series
7.03 Half-Range Fourier Series
7.04  Frequency Spectrum

Sections for reference only, not examinable in this course:
7.05 Complex Fourier Series

7.06 Fourier Integrals

7.07 Complex Fourier Integrals

7.08 Some Fourier Transforms

7.09 Summary of Fourier Transforms
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7.01 Orthogonal Functions

The inner product (or scalar product or dot product) of two vectors u and v is defined in
Cartesian coordinates in R® by
3
UsV = D UV, = UV, +U,V, +UyV,
k,

=1
The inner product possesses the four properties:
u

Commutative: UeV = Vo
Scalar multiplication: ki)ev = k(G-v), keR
=0 (if u=6)
Positive definite: Ued B
>0 (if UiO)
Associative: uo(\7+w) = UeV + UeW

Vectors u, v are orthogonal if and only iff Uev = 0.
A pair of non-zero orthogonal vectors intersects at right angles.

The inner product of two real-valued functions f, and f, on an interval [a, b] may be
defined in a way that also possesses these four properties:

b

(fuf) = [ 600 % (x)ax

a

Two functions f, and f, are said to be orthogonal on an interval [a, b] if their inner

product is zero:
b

(f.1,) = j (%) f,(x)dx = 0

a

A set of real-valued functions { ¢,(X), 4 (x), &, (X),--- ¢, (x) } is orthogonal on the
interval [a, b] if the inner product of any two of them is zero:

b
(dh) = | 40 (94, (x) = 0 (m=n)

If, in addition, the inner product of any function in the set with itself is unity, then the set
is orthonormal:

(6 = [0, 00m 0006 = o = { 3 (77

where &, is the “Kronecker delta” symbol.
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Just as any vector in R® may be represented by a linear combination of the three
Cartesian basis vectors, (which form the orthonormal set {i, j, k}), so a real valued
function f (x) defined on [a, b] may be written as a linear combination of the elements of

an infinite orthonormal set of functions { & (%), 4.(X), &, (X),... } on [a, b]:

f(X) = coth (X) + b (X) + Cihy (X) +

To find the coefficients cn, muItipIy f(x) by ¢, (x) and integrate over [a, b]:
b
Iaf(x)¢n(x)dx_cj d, (X dx+cI ¢ (X)g, (x)dx + ...

= gocm_[a ¢, (X) ¢, (x) dx

But the { ¢ n(x) } are an orthonormal set. Therefore all but one of the terms in the
infinite series are zero. The exception is the term for which m = n, where the integral is
unity. Therefore

c, = jbf(x)¢n(x)dx

a

- i(U )dx)¢( )j

If the set is orthogonal but not orthonormal, then the form for f (x) changes to

and

oo I: f (x)g, (x)dx

b
n=0 '[a .2 (x) dx

The orthogonal set {¢ n(x)} is complete if the only function that is orthogonal to all
members of the set is the zero function f (x) =0. An expansion of every function f (x) in
terms of an orthogonal or orthonormal set {¢ n(x)} is not possible if {¢ ,(X)} is not
complete.

¢ (%)

Also note that a generalised form of an inner product can be defined using a weighting
function w(x), so that, in terms of a complete orthogonal set {#n(x)},

J.abw(x) f (x)g, (x) dx
_[abw(x)¢n2 (x) dx

We shall usually be concerned with the case w(x) =1 only.

[e0]
n=0
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Example 7.01.1

Show that the set { sin nx } (n € N) is orthogonal but not orthonormal and not complete

on [~z +7].
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7.02 Definitions of Fourier Series

Example 7.02.1

Show that the set {1, {cos(niﬁ(j},{sin(niﬁ(j}}, (neN) is orthogonal but not

orthonormal on [-L, L].
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Example 7.02.1 (continued)
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Using the results from Example 7.02.1, we can express most real-valued functions f (x)
defined on (-L, L), in terms of an infinite series of trigonometric functions:

The Fourier series of f (x) on the interval (-L, L) is

(9= 3+ Fawon( ") + non( %)

n=1
where

L
a, = %j f(x)cos(nil_xjdx, (n=0,1,23,..))

-L
and

b, = %J_LLf(x)sin(niﬁ(]dx, (n=1,2,3,...)

The {a,, bn} are the Fourier coefficients of f (x).

Note that the cosine functions (and the function 1) are even, while the sine functions are
odd.

If f(x) iseven (f(—x)= +f(x) for all x), then b, =0 for all n, leaving a Fourier cosine
series (and perhaps a constant term) only for f (x).

If f(x) isodd (f (x) = —f (x) forall x), then a, = 0 for all n, leaving a Fourier sine
series only for f(x).
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Example 7.02.2

- 0
Expand f(x) = { 0 y EOZiii ; in a Fourier series.
T — S T
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Example 7.02.2 (Additional Notes — also see
"www.engr.mun.ca/~ggeorge/9420/demos/")
The first few partial sums in the Fourier series

© n
f(x) = LA Z[ﬁcosnx + 1sinnx] (- <x<+7)
4 =) n“z n

are
T

So = —

4
T 2 .

S, = — + —CosX + sinx
4 V4
T 2 . 1.

S, = — + —C0sX + sinxX + —sin2x
4 Vs 2

S, = Z 4 Ecosx + sinx + 1sin2x + icos3x + 1sin3x
4 V4 2 O 3

and so on.

The graphs of successive partial sums approach f(x) more closely, except in the vicinity

of any discontinuities, (where a systematic overshoot occurs, the Gibbs phenomenon).
¥

¥
2 exact 3 exact
» = 80x)
r=8,(x)
21 21
] 1
, : , AN . . \
1 2 3

3 INoA Y 1 P 3 e AV L X

¥ ¥

¥ =815(x) »=8,(x)
3 ]

exact

exact
2 2
¥
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Example 7.02.3

Find the Fourier series expansion for the standard square wave,

f(x) = {—1 (-1<x<0)

+1 (0<x<+1)

The graphs of the third and ninth partial sums (containing two and five non-zero terms
respectively) are displayed here, together with the exact form for f (x), with a periodic
extension beyond the interval (-1, +1) that is appropriate for the square wave.

F
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Example 7.02.3 (continued)

wat e v

MNosoa B Aoas
vvvu WOW W

Convergence

At all points x =X, in (-L, L) where f (x) is continuous and is either differentiable or the
limits lim f'(x) and lim f’(x) both exist, the Fourier series converges to f (x).

- +
X=X, X=X,

At finite discontinuities, (where the limits lim f’(x) and lim f'(x) both exist), the

X=Xy~ X=X, "
. . f(xo _) + f(xo +)
Fourier series converges to 5 ,
(using the abbreviations f (x,—) = lim f(x) and f(x,+) = lim f(x)).
X=Xy X=Xy

f (x) not continuous  continuous but  continuous and
at X =X, not differentiable  differentiable

) ) f(x,—)+ f(x+
In all cases, the Fourier seriesat X=X, converges to ( ° ) 5 ( ° ) (the red dot).
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7.03 Half-Range Fourier Series

A Fourier series for f (x), valid on [0, L], may be constructed by extension of the domain
to [-L, L].

An odd extension leads to a Fourier sine series:
-z

where

An even extension leads to a Fourier cosine series:
-

y=+f-x) y=f(x)

where

=—If cos( jdx (n=0,1,23,...)

and there is automatic continuity of the Fourier cosine seriesatx =0and at x = + L.
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Example 7.03.1

Find the Fourier sine series and the Fourier cosine series for f (x) =x on [0, 1].

Fifth order partial sum of the Fourier sine series for f (x) =x on [0, 1]

o
a
- a L }x
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Example 7.03.1 (continued)
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Example 7.03.1 (continued)

Third order partial sum of the Fourier cosine series for f (x) =x on [0, 1]

Note how rapid the convergence is for the cosine series compared to the sine series.

y = S,(x) for cosine series and y =S (x) for sine series for f(x) =x on [0, 1]

F

»~
1..

]
- =N
=
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7.04  Frequency Spectrum

The Fourier series may be combined into a single cosine series.
Let p be the fundamental period. If the function f (x) is not periodic at all on [-L, L],
then the fundamental period of the extension of f (X) to the entire real line is p=2L.

Define the fundamental frequency o = 27 _ %
p

The Fourier series for f (x) on [-L, L] is, from page 7.07,

100 = 3+ Do ) o msin( %] = 5 >

n=1

M

a cos(newx) + b, sm(na)x))

a, = EIL f(x)cos(nl_ jdx = %J‘L f (x)cos(nwx)dx, (n=0,1,23,...)

b, = %IL f(x)sin(@) = —I x)sin(nox)dx, (n=123,...)

Let the phase angle &, be such that tang, = — 2—”,

n C?’!
i b a _b”
sothat sing, = —— and cos¢g, = +— N
c

n Cn cd

where the amplitude is ¢, = y/a,” +b,?.

Also, in the trigonometric identity ~ cos AcosB — sin AsinB = cos(A+ B),
replace A by newx and B by &,. Then

a, cos(nwx) + b, sin(nwx) = (c,coss, )cos(nwx) — (c,sing, )sin(nwx)
= ¢, cos(nwx+4,), where |o = % = % . ey = Ja2+b?| and |tans, = —Z—”
n

Therefore the phase angle or harmonic form of the Fourier series is

0

f(x) = % + Z;cn cos(nwx+4,)
n=
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Example 7.04.1
Plot the frequency spectrum for the standard square wave,
-1 (-1<x<0
f(x) = ( )
+1 (0<x<+1)
From Example 7.02.3, the Fourier series for the standard square wave is
0 n 0
1-(-1
f(x) = EZ gsin nzx | = iz 1 sin(2k —1) zx
T n Vs 2k -1
n=1 k=1
Ac”
1..
- T - T - - ""' }
I 1 2 3 5 6 7 3 g 7
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Example 7.04.2

Plot the frequency spectrum for the periodic extension of
f(x) =|x], —l<x<1
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Example 7.04.2 (continued)

(which converges very rapidly, as this third partial sum demonstrates)
Y

A

1+

_q ! x

The harmonic amplitudes are

1 1 _
E (n = 0) E (n - 0)
C, = 2(1_(_1)n) = 0 (neven,n>2)
— (n € N) 4 (n Odd)
The frequencies therefore diminish rapidly:
A.Cn
0.4
0.2
- '1" - * »*
0 1 2 3 4 5 = 7
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7.05 Complex Fourier Series [for reference only, not examinable]

Note that the Euler identity el? = coso + jsin@ leads to
ejna)x + e—jna)x jnox e—jna)x

COSNwX = and sinnwx = -
2 2]

The Fourier series for the periodic extension of f (x) from the original interval [a, a+p) is

f(x) = % + i“(an cos(nax) + b, sin(nwx)),

n=1

where o = 2— and

a+p
= —I cos na)x = —J. sm na)x)dx

The Fourier series becomes

© jnax — jnawx jnox. = jnwx
f(x):%+2{ane +26 +bne 2? }
- ]
=1

[l (e

jnox * _— jnwX
[dneJ +de! J

| |
+

where d, = %Jb” for all non-negative integers n.

_an_jbn_lz a+p __g a+p .
d, = 20— = {pj‘a f (x)cos(newx) dx jpja f(x)sm(na)x)dx}

= iJ“Mp f (X)I:COS(nCUX) — jSin(na)X):I dx = %J-aw ; (X) e—jna)x i

d, = ljjp f(x) e X gy = %jaw F(x)e M gy = g,

a

Therefore the entire Fourier series may be re-written more concisely as

a+p

f(x) = Z d,el", where d = —I x)e X gy

nN=-o0

The numbers { ..., d o, d i, do, di, dy, ... } are the complex Fourier coefficients of f.
The harmonic amplitudes of f are just the magnitudes { | d, |} forn =0, £1, £2, ....
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Example 7.05.1

Find the complex Fourier series expansion for the standard square wave,

f(x) = {—1 (-1<x<0)

+1 (0<x<+1)

27
p=2 = a):7=7r

11 1(¢0 1 141
d, :Ej_lf(x)dx=EU —1dx+Io+1dx)_ = 0

1 2
Forn =0,

_ 1 ! —jnzx _ 1 0_ —jnzx 1 —jnzx
d, = 2j_lf(x)e dx = 20_1 e " d [ re I dx

0

_a—Inzx 0 [ —jnzx 1 . . .
A [ ] e e

0

éuw = 1} = l(cos(n;z) -1) = l((—1)n — 1)

nxz nzx
or
0 (neven)
d, = 2]
- dd
nz (nodd)

In its most compact form, the complex Fourier series for the square wave is

() =+ 2 LM
7w e 2k -1

The amplitude spectrum is the set (na), |dn|) = [nn, ﬁ} for odd n only.
T

|4

nl
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7.06 Fourier Integrals [for reference only, not examinable]

The Fourier series may be extended from (—L, L) to the entire real line.
Nz V4 1 Aw
Let C()n = — j—l a)n — a)n—l =— =Aow = — = —
L L L T
The Fourier series for f(x) on (-L, L) is

L e -
Z( UL yon 2o 7
I o on( )

L

= f(x)==—1] f(t)dt +

27 J L

512( [ roeestanat st

n=1

+ %[J‘L f(t)sin(a)nt)dt]sin(wnx)J

T -L

1
+_
L

Now take the limitas L — oo = Aw—0:
The first integral converges to some finite number, so the first term vanishes in the limit.
The summation becomes an integral over all frequencies in the limit:

f(x) >0+

T st

T —0

N i( J': f (t)sin(a)t)dtjsin(a)x)da)j

T
Therefore the Fourier integral of f (x) is

f(x) = Iow(chos(wx) + B,sin(wx))dw

where the Fourier integral coefficients are

= —I Jcos(wt)dt and B, = —I (t)sin(at)dt

provided J._w‘f (x)| dx converges.
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Example 7.06.1

Find the Fourier integral of

f(x) = {1 (-1<x<+1)

0 (otherwise)

From the functional form and from the graph of f (x), it is obvious that f (x) is piecewise
smooth and that f‘f (x)| dx converges to the value

Y
* 1 .
- o o -
-1 0 1 X
1t 1| sin(ot) Y 2sine
= —I )cos(et)dt = —j cos(mt)dt = = =
Tda V4 o |, T

The function f(x) iseven = B, = 0 forall w.

Therefore the Fourier integral of f(x) is

*2sinw
f(x) = d
(x) IO — cos(wx) dw

It also follows that

. 1 (-1<x<1)

sinw ) _

J.O — cos(wx)do = 1 3 (x==1)
0 (otherwise)

Fourier series and Fourier integrals can be used to evaluate summations and definite
integrals that would otherwise be difficult or impossible to evaluate. For example,
setting x =0 in Example 7.06.1, we find that

I SInt 4 —
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7.07 Complex Fourier Integrals [for reference only, not examinable]

f(x) = Jow(chos(wx) + B, sin(ex))de

o 0 jx —jaox jx — jox
e +€ € —€
= A —/— + B,——— |dw
2]

_ ( —JB ,wx+(Aw+2ij]e_ijjdw

= el L c e ij)da), where C, = w
« ” cos t)+ jsin(at

But C, = 1J. (@) (w)dt

T - 2

® t)— jsin(—wt
_1 cos (—ot)— jsin( a))dt _c.
TJd - 2
0 .

and J‘ JCUX a) = J‘ (C+a) e+Ja)X> da)

By convention, the factor of zi is extracted from the coefficients.
T

Therefore the complex Fourier integral of f(t) is

£(t) = i c, el dt

where the complex Fourier integral coefficients are

C, = j f(t)e ot gt

(which is also the Fourier transform of f, f (@) = 7 [f (1)](®) ).

o 1s the frequency of the signal f (t).
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7.08 Some Fourier Transforms [for reference only, not examinable]

If f(a)) is the Fourier transform of f (t), then

and the inverse Fourier transform is

f(t) = % 3 1‘A(a))ejwt dw

Example 7.08.1

Find the Fourier transform of the pulse function
f(t) = k(H(t+a)-H(t-a)) = {

k (-as<t<a)
0 (otherwise)

From the functional form and from the graph of f (t), it is obvious that f (t) is piecewise

smooth and that J._w\f (t)| dt converges to the value 2ak.

Sl
& i O
—= T < =0
- ] b £

—jw @

o . a .
f (o) = J f(t)e ) dt = j ke 1 dt = {
—o0 —a

Therefore

sin(aw)

f = 2k
(o) -

2]

ke_jwt:|a ok (_e—ja)a +e+ja)a)
-a




ENGI 9420 7.08 - Fourier Transforms Page 7.26

Example 7.08.1 (continued)

The transform is real. Therefore the frequency spectrum follows quickly:

A|?'(°f:'|
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Example 7.08.2

Find the Fourier transform of the triangle function
K

f(t) = g(a—|t|) (-a<t<a)
0 (otherwise)

From the functional form and from the graph of f (t), it is obvious that f (t) is piecewise

smooth and that J.w\ f (t)|dt converges to the value ak.

Ji)

—= ==

a

0 . .
j (a+t)e 1 dt + Ej (a-t)e 1 dt
-a aJo

r 0 a
“lo (-jo) L Ale (ce) 0

£+ 3)-(o- 3= [o- 3 (2]
@ w w @ w w

_ L(Z _ eloa _ e_j“’a) = Z—kz(l—cos(aa)))

aw’ aw

f (o) = jif(t)e‘j“’t dt = K

a

o | x

Q| x

Therefore

A _ 2 1-cos(aw)

f(w) 2

a (9]

An equivalent form is
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Example 7.08.2 (continued)

The Fourier transform of the triangle function happens to be real and non-negative, so
that it is its own frequency spectrum ‘f (a))‘ = f (o).

sy

RO
o d

-8 -2 -4 0 1 2 8 1247 @
s ot s 3 ot s [ S
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Example 7.08.3

Time Shift Property:

Let () = 7{f(t)}(0) = jw f(t)e ot gt
Then
FLE (-t} (o) = jw f(t-t,)e 1o gt = jw f(u)e ) gy
= e_jwto-[w f(u)e M du = e_ja)tOJ.w f(t)e 1 dt = e 1 f ()

—00

Therefore the time shift property of Fourier transforms is

FL(t-t)}(0) = e T (1 (1)} ()

There are many other properties of Fourier transforms to explore, (such as sampling,
windowing, filtering, Fourier [Co]sine Transforms, discrete Fourier transforms and Fast
Fourier transforms) and their applications to signal analysis. However, there is
insufficient time in this course to proceed beyond this introduction.
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7.09 Summary of Fourier Transforms [for reference only, not examinable]

In this table, a > 0.

fo f(0) = 7{f (O)}(e)
~alt 2a
€ a’ + o’
ap —4ajw
te (a2 + o’ )2
2 2
|t|e_a‘t‘ E(? _i))z)
a’+w
—at 1
H(t
€ (1) a+ jo
2
—(at)2 ﬁe “ 4a?2
e a
Pulse (or gate) sin(aw)
k(H(t+a)—H(t-a)) 2k—>

Triangle

E(a—|t|) (-a<t<a) 2k 1-cos(aw)
a a »°
0 (otherwise)

Time shift —jaty 2
f(t-to) e o)
Scaling 1 f(ﬂj

f (at) a \a




ENGI 9420

7.09 - Fourier Transforms

Page 7.31

Table of Fourier Transforms (continued)

J‘; f (x)dx

f( f(0) = 7{f (D}(e)
Time Differentiation (ja))n f(a))
n
A0 [provided f continuous]
Frequency dn .
Differentiation i"— f (o)
t" £ (t) do
Time Integration f (o)
jo

[provided f (0)=0]

Time Convolution

~
A

f*g
Frequency A
Convolution f*g
f.g 2
Dirac delta .
—jaw
s(t-a) €
1 z -a|o|
t> +a’ a
t —j e—a\a)\
t> +a’ 2a
1
- j sgn(e)

Shannon Sampling Theorem

The entire signal f (t) may be reconstructed from the discrete sample at times

R
L

T

L

,O,+£,+2—7[,...}:
L L

END OF

(n_;z)sin(Lt—nz)

L Lt—nxz

CHAPTER 7
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[Space for additional notes]
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