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1. Ordinary Differential Equations 
 
 An equation involving a function of one independent variable and the 

derivative(s) of that function is an ordinary differential equation (ODE).    
 
 The highest order derivative present determines the order of the ODE and the 

power to which that highest order derivative appears is the degree of the ODE.   A 
general nth order ODE is 

 
( )( ), , , , , 0nF x y y y y′ ′′ =  

Example 1.00.1  
 

 
22

2
2

d y dyx x y
d x dx

 + = 
 

  is a second order first degree ODE. 

 
Example 1.00.2  
 

 
2

2dyx x y
dx

  = 
 

  is a first order second degree ODE. 

 
In this course we will usually consider first degree ODEs of first or second order only. 
The topics in this chapter are treated briefly, because it is assumed that graduate students 
will have seen this material during their undergraduate years. 
 
 
 
Sections in this Chapter: 
 
1.01 First Order ODEs - Separation of Variables  
1.02 Exact First Order ODEs 
1.03 Integrating Factor 
1.04 First Order Linear ODEs   [ + Integration by Parts] 
1.05 Bernoulli ODEs 
1.06 Second Order Homogeneous Linear ODEs 
1.07 Variation of Parameters 
1.08 Method of Undetermined Coefficients 
1.09 Laplace Transforms 
1.10 Series Solutions of ODEs 
1.11 The Gamma Function 
1.12 Bessel and Legendre ODEs 
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1.01 First Order ODEs - Separation of Variables  
 
Example 1.01.1  
 
A particle falls under gravity from rest through a viscous medium such that the drag force 
is proportional to the square of the speed.   Find the speed  v(t)  at any time  t > 0  and 
find the terminal speed  v∞.  
 
 

The forces acting on the ball bearing are its weight downwards 
and friction upwards.   Let m be the mass of the object, 
g ≈ 9.81 m s–2 be the gravitational acceleration due to gravity.    
 
Newton’s second law of motion states  

( )d dvF mv m
dt dt

= =  

The ODE governing the motion follows: 
2dvm mg bv

dt
= −  (Net force  =  weight  −  drag force) 

 
In standard form,  
( )

( )
( )
( )


( )

2 0

only c

,,

onst.

N t

bv mg dt m dv

vM t v

f v
↑ ↑

− + =


 ∴ type separable. 

 
Whenever a first order ODE can be rewritten in the form  
 

f (x) dx  =  g(y) dy 
 
the method of separation of variables may be used. 
 
The ODE in this problem may be separated into the form  
 

2
2

m mdv dt dv dt
mgmg bv b v
b

= ⇒ =
−  − − + 
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Example 1.01.1  (continued) 
 

2

dv b dtmg mv
b

⇒ = −
− ∫∫  

 
2

2 2 wheredv b mgdt k
v k m b

⇒ = − =
−∫ ∫  

 
Partial fractions:  
 

( )( )
1 A B

v k v k v k v k
= +

− + − +
 

 
Using the “cover-up rule”: 
 

( )
1A

k k
=

− ( )
1

2kk k
=

+
 

 

( ) ( )
1B

k k k k
=

− − +

1
2k
−

=  

 

2 2

1 1 1 1
2v k k v k v k

 ⇒ = − − − + 
 

 

( ) ( )( ) 1
1 ln ln

2
btv k v k C

k m
⇒ − − + = − +  

 

2 2
2ln ,

2 2where 2

v k kbt C pt C
v k m

kb b mg bgp
m m b m

− ⇒ = − + = − + + 

= = =

 

 
2pt C ptv k e A e

v k
− + −−

⇒ = =
+

 

 
⇒    v  −  k  =  v A e−pt  +  k A e−pt 
 
⇒    v (1  −  A e−pt)  =  k (1  +  A e−pt)  
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Example 1.01.1  (continued) 
 
General solution:  

( ) ( )1

1

pt

pt
k A e

v t
A e

−

−

+
=

−
 

Initial condition:  v(0)  =  0 
 

( )1
0 1

1
k A

A
A
+

⇒ = ⇒ = −
−

 

 
Complete solution: 
 

( ) 1 , where and 2
1

pt

pt
e mg bgv t k k p
e b m

−

−
−

= ⋅ = =
+

 

 
Terminal speed  v∞: 
 

( ) 1 0lim
1 0t

mgv v t k k
b∞ →∞

−
= = = =

+
 

 
The terminal speed can also be found directly from the ODE. 
At terminal speed, the acceleration is zero, so that the ODE simplifies to  

2 20dv mgm mg bv v
dt b∞ ∞= = − ⇒ =  

 
Graph of speed against time: 
 

 
[For a 90 kg person in air,  b ≈ 1 kg m−1  →  k   ≈  30 ms−1   ≈  100 km/h. 
v(t)  is approximately linear at first, but air resistance builds quickly. 
One accelerates to within 10 km/h of terminal velocity very fast, in just a few seconds.] 
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1.02 Exact First Order ODEs    
 
If x and y are related implicitly by the equation   u(x, y) = c  (constant), then the chain rule 
for differentiation leads to the ODE 

0u udu dx dy
x y

∂ ∂
= + =

∂ ∂
 

Therefore, for the functions M(x, y) and N(x, y) in the first order ODE   
M dx  +  N dy  =  0 , 

if a potential function  u(x, y) exists such that  

andu uM N
x y

∂ ∂
= =
∂ ∂

, 

then   u(x, y) = c  is the general solution to the ODE and the ODE is said to be exact. 
 
Note that, for nearly all functions of interest, Clairault’s theorem results in the identity 

2 2u u
y x x y
∂ ∂

≡
∂ ∂ ∂ ∂

 

This leads to a simple test to determine whether or not an ODE is exact: 
 

0 is exactM N M dx N dy
y x

∂ ∂
≡ ⇒ + =

∂ ∂
 

 
A separable first order ODE is also exact (after suitable rearrangement). 
 
 f (x) g(y) dx   +   h(x) k(y) dy   =   0 [separable] 
 

( )
( )

( )
( )

0
f x k y

dx dy
h x g y

M N

   
⇒ + =      

   
 

 

 

0M N
y x

∂ ∂
⇒ = =

∂ ∂
 

However, the converse is false.   One counter-example will suffice.    
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Example 1.02.1 
 
The ODE   
 ( ) 0x xy e x dx e dy− + =   
is exact,  

,x x xM NM y e x N e e
y x

 ∂ ∂
= − = ⇒ = = ∂ ∂ 

 

but not separable. 
 
To find the general solution, we seek a potential function  u(x, y)  such that  

andx xu uy e x e
x y

∂ ∂
= − =

∂ ∂
 

It does not take long to discover that  
21

2
xu y e x c= − =  

possesses the correct partial derivatives and is therefore the general solution of the ODE. 
 
The solution may be expressed in explicit form as  

( )21
2

xy c x e−= +  

 
 
 
 
 
 
Example 1.02.2    
 
Is the ODE    2y dx  +  x dy  =  0    exact? 
 
 

2 2 , 1M N MM y N x
y x y

∂ ∂ ∂
= ⇒ = = ⇒ = ≠

∂ ∂ ∂
 

Therefore NO, the ODE is not exact. 
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Example 1.02.3    
 
Is the ODE 
 ( )2 1 1 2 22 0n n n nA x y dx x y dy+ + ++ =  

(where  n  is any constant and  A  is any non-zero constant) exact? 
Find the general solution. 
 
 

( )

( )

2 1 1 2 1

2 2 2 1

2 2 1

2 2

n n n n

n n n n

MM A x y A x n y
y

N MN A x y A n x y
x y

+ + +

+ +

∂
= ⇒ = +

∂
∂ ∂

= ⇒ = + =
∂ ∂

 

Therefore YES, the ODE is exact (for any n and for any non-zero A). 
 
To find the general solution, we seek a potential function  u(x, y)  such that  

2 1 1 2 22 andn n n nu uA x y A x y
x y

+ + +∂ ∂
= =

∂ ∂
 

If n = 1

2 2 1
1 then

1

n nA x yu c
n

+ +
− = =

+
 

( ) 1
2If 1 then lnn u A x y c= − = =  

In either case, the general solution simplifies to 2x y c= or, in explicit form,  

2
cy
x

=  

 
 
 
 
Note that the exact ODE in example 1.02.3 is just the non-exact ODE of example 1.02.2 
multiplied by the factor ( ) 2 1, n nI x y A x y+= .   The ODEs are therefore equivalent and 

share the same general solution.   The function ( ) 2 1, n nI x y A x y+=  is an integrating 
factor for the ODE of example 1.02.2. 
 
Also note that the integrating factor is not unique.   In this case, any two distinct values of 
n generate two distinct integrating factors that both convert the non-exact ODE into an 
exact form.   However, we need to guard against introducing a spurious singular solution 

0.y ≡  
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1.03 Integrating Factor 
 
Occasionally it is possible to transform a non-exact first order ODE into exact form, 
using an integrating factor  I (x, y). 
Suppose that  

P dx  +  Q dy  =  0 
is not exact, but that  

IP dx  +  IQ dy  =  0 
is exact.  
 
Then, using the product rule,  
 

M I PM I P P I
y y y

∂ ∂ ∂
= ⋅ ⇒ = +

∂ ∂ ∂
 

and 
N I QN I Q Q I
x x x

∂ ∂ ∂
= ⋅ ⇒ = +

∂ ∂ ∂
 

 
From the exactness condition  
 

M N I I P QQ P I
y x x y y x

 ∂ ∂ ∂ ∂ ∂ ∂
= ⇒ − = ⋅ − ∂ ∂ ∂ ∂ ∂ ∂ 

 

This is an awkward partial differential equation.   Where it is valid, we may use the 
assumption that the integrating factor is a function of  x  alone, to simplify its derivation.  

0d I P QQ I
d x y x

 ∂ ∂
− = ⋅ − ∂ ∂ 

 

 
1 1d I P Q
I d x Q y x

 ∂ ∂
⇒ = − ∂ ∂ 

 

This assumption is valid only if  ( )xR
x
Q

y
P

Q
=








∂
∂

−
∂
∂

⋅
1

 is a function of  x only. 

 

If so, then the integrating factor is ( )
( )R x dx

I x e= ∫   
 
[Note that the arbitrary constant of integration can be omitted safely.]   Then 

( ) ( ), , etc.
R x dx

u M dx e P x y dx= = ⋅∫∫ ∫  
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Returning to 
M N I I P QQ P I
y x x y y x

 ∂ ∂ ∂ ∂ ∂ ∂
= ⇒ − = ⋅ − ∂ ∂ ∂ ∂ ∂ ∂ 

 

If we assume that the integrating factor is a function of  y  alone, then  









∂
∂

−
∂
∂

⋅=⋅−
x
Q

y
PIP

dy
dI0     








∂
∂

−
∂
∂

⋅=⋅⇒
y
P

x
Q

Pdy
dI

I
11  

This assumption is valid only if  ( )1 Q P S y
P x y

 ∂ ∂
⋅ − = ∂ ∂ 

 a function of  y only. 

 

If so, then the integrating factor is ( )
( )S y dy

I y e= ∫  and 
 

( )
( ), , etc.

S y dy
u N dy e Q x y dy= = ⋅∫∫ ∫  

 
 
 
Example 1.03.1   (Example 1.02.2 again) 
 
Find the general solution of the ODE  
 2y dx  +  x dy  =  0    
 
 

( )1 2 1 12 , P QP y Q x R x
Q y x x x

 ∂ ∂ −
= = ⇒ ⋅ − = = = ∂ ∂ 

 

Therefore an integrating factor that is a function of x only does exist. 

( ) ( ) ( ) ln1 ln
R x dx xR x dx dx x I x e e x

x
= = ⇒ = = =∫∫ ∫  

Multiplying the original ODE by  I(x), we obtain the exact ODE 
 2xy dx  +  x2 dy  =  0    
 
To find the general solution, we seek a potential function  u(x, y)  such that  

22 andu ux y x
x y

∂ ∂
= =

∂ ∂
 

This leads quickly to the general solution, 2u x y c= = or, in explicit form,  

2
cy
x

=  
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Example 1.03.2    
 
Find the general solution of the ODE  
 
  2xy dx   +   (2x2 + 3y) dy   =   0  
 
 
Test for exactness: 

22 , 2 3 2 , 4P QP xy Q x y x x
y x

∂ ∂
= = + ⇒ = = =

∂ ∂
P
y

∂
∂

 

Therefore the ODE is not exact. 
 
Assume an integrating factor of the form  I (x): 

2

1 2 4
2 3

P Q x x
Q y x x y

 ∂ ∂ −
⋅ − = ∂ ∂ + 

= ( )R x  

Therefore an integrating factor that is a function of  x only does not exist. 
 
Assume an integrating factor of the form  I (y): 

( )1 4 2 1
2

Q P x x R y
P x y x y y

 ∂ ∂ −
⋅ − = = = ∂ ∂ 

 

Therefore an integrating factor that is a function of  y only does exist. 

( ) ( ) ( ) ln1 ln
R y dy yR y dy dy y I y e e y

y
= = ⇒ = = =∫∫ ∫  

Multiplying the original ODE by  I (y), we obtain the exact ODE 
 
  2xy2 dx   +   (2x2y + 3y2) dy   =   0  
 
To find the general solution, we seek a potential function  u(x, y)  such that  

2 2 22 and 2 3u ux y x y y
x y

∂ ∂
= = +

∂ ∂
 

This leads quickly to the general solution,  u = 2 2 3x y y c+ =  or, in explicit form,  
 

3c y
x

y
−

= ±  
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1.04 First Order Linear ODEs  [ + Integration by Parts]    
 
A special case of a first order ODE is the linear ODE: 
 

( ) ( )dy P x y R x
dx

+ =  

[or, in some cases,  

( ) ( )ySxyQ
dy
dx

=+  ] 

 
Rearranging the first ODE into standard form,  
 

(P(x) y − R(x)) dx  +  1 dy  =  0 
 
Written in the standard exact form with a simple integrating factor in place, the ODE 
becomes 

I (x) (P(x) y − R(x)) dx  +  I (x) dy  =  0 
 
Compare this with the exact ODE 

du  =  M(x, y) dx  +  N(x, y) dy  =  0 
 

The exactness condition 
x
N

y
M

∂
∂

=
∂
∂    ( ) ( ) dII x P x

dx
⇒ ⋅ =    dI P dx

I
⇒ = ∫∫  

 

( )Let , thenh x P dx= ∫   ln I (x)  =  h(x)   

 
and the integrating factor is 

 ( ) ( ) ( ) ( ) ( ), whereh x d hI x e h x P x dx P x
d x

 
= = ⇒ = 

 ∫ . 

The ODE becomes the exact form 
 eh (Py − R) dx  +  eh dy  =  0 
Seek a potential function  u(x, y)  such that  

( ) andh hu ue h y R e
x y

∂ ∂′= − =
∂ ∂

 

h h h hu y e e R dx C y e e R dx C⇒ = − = ⇒ = +∫ ∫  

Therefore the general solution of ( ) ( )xRyxP
dx
dy

=+  is 

( ) ( ) ( ) ( ) ( ) ( ), whereh x h xy x e e R x dx C h x P x dx−  = + = 
  ∫∫  
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Example 1.04.1  
 
Solve the ordinary differential equation  

2 1dy y
dx x

+ =  

 
 

This ODE is linear, with ( ) 2P x
x

=  and R(x) = 1. 

 

( )22 2 ln lnh P dx dx x x
x

= = = =∫ ∫  

The integrating factor is therefore   eh = x 2 . 
3

21
3

h xe R dx x dx= =∫ ∫  

( ) 3

2
1

3
h h xy e e R dx C C

x
−  

⇒ = + = + 
 ∫  

The general solution is therefore  

23
x Cy

x
= +  

 
Alternative methods: 
 
The ODE is not separable. 
 
Re-arrange the ODE into the form  
 
(2y – x) dx  +  x dy  =  0 
 

2 and 2 , 1y x yP y x Q x P Q P= − = ⇒ = = ≠  
 
This ODE is not exact. 
 

( )2 1 1y xP Q
R x

Q x x
− −

= = =  

 

( )1 lnR dx dx x I x x
x

⇒ = = ⇒ =∫ ∫  
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Example 1.04.1  (continued) 
 
The exact ODE is therefore  
 
(2xy – x2) dx  +  x2 dy  =  0 
 

2 2
3

22 and
3

u u xxy x x u x y c
x y

∂ ∂
= − = ⇒ = − =

∂ ∂
 

 
The same explicit solution then follows: 
 

23
x Cy

x
= +  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
OR 
 

Try to re-write the ODE in another exact form ( )( ) ( ),d u x y v x
dx

= : 

 

( )2 2 2 22 1 2dy dy dy x xy x x y x
dx x dx dx

+ = ⇒ + = ⇒ =  

 
2

2

3

3 3
x x cx y c y

x
⇒ = + ⇒ = +  
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