Examples of Integration by Parts

The method of integration by parts will be required in the next example of a first order linear ODE (Example 1.04.4). There are three main cases for integration by parts:

Example 1.04.2
Integrate $x^{3} e^{x}$ with respect to x.

Therefore

$$
\int x^{3} e^{x} d x=e^{x}\left(x^{3}-3 x^{2}+6 x-6\right)+C
$$

This is an example where the table stops at a zero in the left column.

Example 1.04.3

Integrate $\ln x$ with respect to x.

Therefore $\quad \int \ln x d x=x \ln x-\int \frac{x}{x} d x=x \ln x-\int 1 d x=x \ln x-x+C$
$\Rightarrow \int \ln x d x=x(\ln x-1)+C$
This is an example where the table stops at a row that can be integrated easily.
The third case, where the table stops at a row that is a multiple of the original integrand, follows in Example 1.04.4.

Example 1.04.4

An electrical circuit that contains a resistor, $R=8 \Omega$ (ohm), an inductor, $L=0.02$ millihenry, and an applied emf, $E(t)=2 \cos (5 t)$, is governed by the differential equation

$$
L \frac{d i}{d t}+R i=\frac{d E}{d t}
$$

Determine the current at any time $t \geq 0$, if initially there is a current of 1 ampere in the circuit.

First note that the inductance $L=2 \times 10^{-5} \mathrm{H}$ is very small. The ODE is therefore not very different from

$$
0+R i=d E / d t
$$

which has the immediate solution

$$
i=(1 / R) d E / d t=(1 / 8) \times(-10 \sin 5 t)
$$

We therefore anticipate that $\quad i=-(5 / 4)$ sin $5 t$ will be a good approximation to the exact solution.

Substituting all values $\left(R=8, L=2 \times 10^{-5}, E=2 \cos 5 t \Rightarrow E^{\prime}=-10 \sin 5 t\right)$ into the ODE yields

$$
\frac{d i}{d t}+4 \times 10^{5} i=-5 \times 10^{5} \sin 5 t
$$

which is a linear first order ODE.
$P(t)=400000$ and $R(t)=-500000 \sin 5 t \Rightarrow h=\int P d t=400000 t$
\Rightarrow integrating factor $=e^{h}=e^{400000 t}$
$\Rightarrow \int e^{h} R d t=-500000 \int e^{400000 t} \sin 5 t d t$
Integration by parts of the general case $\int e^{a x} \sin b x d x$:

$$
a^{2} e^{a x}-+\rightarrow-\frac{1}{b^{2}} \sin b x
$$

$\Rightarrow \int e^{a x} \sin b x d x=\left[-\frac{1}{b} e^{a x} \cos b x+\frac{a}{b^{2}} e^{a x} \sin b x\right]-\int \frac{a^{2}}{b^{2}} e^{a x} \sin b x d x$

$$
=\frac{1}{b^{2}}\left[e^{a x}(-b \cos b x+a \sin b x)\right]-\frac{a^{2}}{b^{2}} \int e^{a x} \sin b x d x
$$

Example 1.04.4 (continued)
$\Rightarrow\left(1+\frac{a^{2}}{b^{2}}\right) \int e^{a x} \sin b x d x=\frac{1}{b^{2}}\left[e^{a x}(a \sin b x-b \cos b x)\right]$
$\Rightarrow \int e^{a x} \sin b x d x=\frac{1}{a^{2}+b^{2}}\left[e^{a x}(a \sin b x-b \cos b x)\right]+C$
Set $a=400000, b=5$ and $x=t$:
$\Rightarrow \int e^{h} R d t=-500000 \frac{1}{400000^{2}+5^{2}} e^{400000 t}(400000 \sin 5 t-5 \cos 5 t)$
The general solution is

$$
\begin{aligned}
& i(t)=e^{-h}\left(\int e^{h} R d t+C\right) \\
& \Rightarrow \quad i(t)=A e^{-400000 t}-\frac{500000}{400000^{2}+25}(400000 \sin 5 t-5 \cos 5 t)
\end{aligned}
$$

But $i(0)=1$

$$
\begin{aligned}
& \Rightarrow \quad 1=A-\frac{500000}{400000^{2}+25}(0-5) \\
& \Rightarrow \quad A=\left(400000^{2}+25-2500000\right) /\left(400000^{2}+25\right)
\end{aligned}
$$

Therefore the complete solution is [exactly]

$$
i(t)=\frac{159997500025 e^{-400000 t}-500000(400000 \sin 5 t-5 \cos 5 t)}{160000000025}
$$

To an excellent approximation, this complete solution is
$\Rightarrow \quad i(t) \approx e^{-400000 t}-\frac{5}{4} \sin 5 t$
After only a few microseconds, the transient term is negligible.
The complete solution is then, to an excellent approximation,
$i(t) \approx-\frac{5}{4} \sin 5 t$
as before.

1.05 Bernoulli ODEs

The first order linear ODE is a special case of the Bernoulli ODE

$$
\frac{d y}{d x}+P(x) y=R(x) y^{n}
$$

If $n=0$ then the ODE is linear.
If $n=1$ then the ODE is separable.
For any other value of n, the change of variables $u=\frac{y^{1-n}}{1-n}$ will convert the Bernoulli ODE for y into a linear ODE for u.
$\frac{d u}{d x}=\frac{d u}{d y} \frac{d y}{d x}=\frac{1-n}{1-n} y^{-n} \frac{d y}{d x} \quad \Rightarrow \quad \frac{d y}{d x}=y^{n} \frac{d u}{d x}$
The ODE transforms to
$y^{n} \frac{d u}{d x}+P(x) y=R(x) y^{n} \quad \Rightarrow \frac{d u}{d x}+P(x) y^{1-n}=R(x)$
We therefore obtain the linear ODE for u :

$$
\frac{d u}{d x}+((1-n) P(x)) u=R(x)
$$

whose solution is

$$
\frac{y^{1-n}}{1-n}=u(x)=e^{-h(x)}\left(\int e^{h(x)} R(x) d x+C\right), \quad \text { where } \quad h(x)=(1-n) \int P(x) d x
$$

together with the singular solution $y \equiv 0$ in the cases where $n>0$.

Example 1.05.1

Find the general solution of the logistic population model

$$
\frac{d y}{d x}=a y-b y^{2}
$$

where a, b are positive constants.

The Bernoulli equation is

$$
\frac{d y}{d x}+(-a) y=(-b) y^{2}
$$

with $P=-a, R=-b, \quad n=2$.
$h=(1-n) \int P d x=(-1) \int-a d x=a x$
Integrating factor $e^{h}=e^{a x}$
$\int e^{h} R d x=\int e^{a x}(-b) d x=-\frac{b}{a} e^{a x} \quad \quad$ (Note that $a>0$)
$\frac{y^{-1}}{-1}=u=e^{-h}\left(\int e^{h} R d x+C\right)=e^{-a x}\left(-\frac{b}{a} e^{a x}+C\right)$
$\Rightarrow y=\frac{a}{b-A e^{-a X}}$
Note that
$y(0)=\frac{a}{b-A} \Rightarrow A=b-\frac{a}{y(0)} \quad$ and $\quad \lim _{x \rightarrow \infty} y=\frac{a}{b}$
Also $y \equiv 0$ is a solution to the original ODE that is not included in the above solution for any finite value of the arbitrary constant A.

The general solution is

$$
y=\frac{a}{b-A e^{-a x}} \quad \text { or } \quad y \equiv 0
$$

[Note that the initial condition is not positive and there is a discontinuity in y at $x=\frac{1}{a} \ln \frac{A}{b}$ if $A \geq b$ is true.]

