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Examples of Integration by Parts    
 
The method of integration by parts will be required in the next example of a first order 
linear ODE (Example 1.04.4).   There are three main cases for integration by parts: 
 
Example 1.04.2   
 
Integrate  x 3 e x  with respect to x. 
 

 
Therefore ( )3 3 23 6 6x xx e dx e x x x C= − + − +∫  

This is an example where the table stops at a zero in the left column. 
 
 
 
Example 1.04.3   
 
Integrate  ln x  with respect to x. 
 

 
Therefore ln ln ln 1 lnxx dx x x dx x x dx x x x C

x
= − = − = − +∫ ∫∫  

( )ln ln 1x dx x x C⇒ = − +∫  

This is an example where the table stops at a row that can be integrated easily. 
 
The third case, where the table stops at a row that is a multiple of the original integrand, 
follows in Example 1.04.4. 
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Example 1.04.4    
 
An electrical circuit that contains a resistor, R = 8 Ω (ohm), an inductor, L = 0.02 
millihenry, and an applied emf, E(t) = 2 cos (5t), is governed by the differential equation 

 
Determine the current at any time t > 0, if initially there is a current of 1 ampere in the 
circuit. 

 
First note that the inductance L = 2×10–5 H is very small.   The ODE is therefore not very 
different from 
 0 + R i  =  dE/dt 
which has the immediate solution 
 i  =  (1/R) dE/dt  =  (1/8)×(–10 sin 5t) 
We therefore anticipate that   i = –(5/4) sin 5t   will be a good approximation to the exact 
solution.    
 
Substituting all values (R = 8 ,  L = 2 × 10–5 ,  E = 2 cos 5t  ⇒  E' = –10 sin 5t) into the 
ODE yields  

  
which is a linear first order ODE. 
 
P(t) = 400 000   and   R(t) = –500 000 sin 5t 400000h P dt t⇒ = =∫  

⇒   integrating factor   =   eh   =   e400 000t  

 
Integration by parts of the general case sinaxe bx dx∫  : 

         
 
 
 
 
 
 
 
 

2

2 2

1sin cos sin sinax ax ax axa ae bx dx e bx e bx e bx dx
b b b

 ⇒ = − + −  ∫ ∫  

( )
2

2 2

1 cos sin sinax axae b bx a bx e bx dx
b b

 = − + −  ∫  
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Example 1.04.4   (continued) 
 

( )
2

2 2

11 sin sin cosax axa e bx dx e a bx b bx
b b

 
 ⇒ + = −   

  ∫  

( )2 2

1sin sin cosax axe bx dx e a bx b bx C
a b

 ⇒ = − + +∫  

 
Set   a = 400 000,   b = 5   and   x = t: 

( )2 2
4000001500000 400000sin 5 5cos5

400000 5
h te R dt e t t⇒ = − −

+∫  

The general solution is 
 

( ) ( )h hi t e e R dt C−= +∫  

( ) ( )2
400000 500000 400000sin 5 5cos5

400000 25
ti t A e t t−⇒ = − −

+
 

But   i(0) = 1 

 
⇒ A   =   (400 0002 + 25 – 2 500 000) / (400 0002 + 25) 
 
Therefore the complete solution is [exactly] 
 

( ) ( )400000159997500025 500000 400000sin 5 5cos5
160000000025

te t t
i t

− − −
=  

 
To an excellent approximation, this complete solution is 

( ) 400000 5 sin 5
4

ti t e t−⇒ ≈ −  

After only a few microseconds, the transient term is negligible. 
The complete solution is then, to an excellent approximation, 

 
as before. 
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1.05 Bernoulli ODEs    
 
The first order linear ODE is a special case of the Bernoulli ODE 

( ) ( ) ndy P x y R x y
dx

+ =  

If  n = 0  then the ODE is linear. 
If  n = 1  then the ODE is separable. 

For any other value of  n , the change of variables 
1

1

nyu
n

−
=

−
 will convert the Bernoulli 

ODE for y into a linear ODE for u.  
 

1
1

n ndu du dy n dy dy duy y
dx dy dx n dx dx dx

−−
= = ⇒ =

−
 

The ODE transforms to 

( ) ( ) ( ) ( )1n n ndu duy P x y R x y P x y R x
dx dx

−+ = ⇒ + =  

We therefore obtain the linear ODE for u: 

( ) ( )( ) ( )1du n P x u R x
dx

+ − =  

whose solution is  
 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )
1

, where 1
1

n h x h xy u x e e R x dx C h x n P x dx
n

− −
= = + = −

− ∫ ∫  

 
together with the singular solution 0y ≡  in the cases where  n > 0. 
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Example 1.05.1    
 
Find the general solution of the logistic population model 

2dy a y b y
dx

= −  

where  a, b  are positive constants. 
 
 
The Bernoulli equation is  

( ) ( ) 2dy a y b y
dx

+ − = −  

with  P  =  –a,   R  =  –b,   n  =  2. 
 

( ) ( )1 1h n P dx a dx ax= − = − − =∫ ∫  

Integrating factor h axe e=  

( )h ax axbe R dx e b dx e
a

= − = −∫ ∫   (Note that  a > 0) 

( )1

1
h h ax axy bu e e R dx C e e C

a

−
− −  = = + = − + −  ∫  

ax
ay

b Ae−
⇒ =

−
 

Note that  

( ) ( )
0 and lim

0 x
a a ay A b y

b A y b→ ∞
= ⇒ = − =

−
 

Also 0y ≡  is a solution to the original ODE that is not included in the above solution 
for any finite value of the arbitrary constant A. 
 
The general solution is 
 
 

or 0ax
ay y

b Ae−
= ≡

−
 

 
[Note that the initial condition is not 
positive and there is a discontinuity in 
y  at 1 ln A

a bx =  if  A > b  is true.]  
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