2. Matrix Algebra

A linear system of m equations in n unknowns,

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}=b_{m}
\end{gathered}
$$

(where the $a_{i j}$ and b_{i} are constants)
can be written more concisely in matrix form, as

$$
\mathrm{A} \stackrel{\rightharpoonup}{\mathbf{x}}=\stackrel{\rightharpoonup}{\mathbf{b}}
$$

where the ($m \times n$) coefficient matrix [m rows and n columns] is

$$
\mathrm{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]
$$

and the column vectors (also $(n \times 1)$ and ($m \times 1$) matrices respectively) are

$$
\stackrel{\mathbf{x}}{\mathbf{x}}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \quad \text { and } \quad \stackrel{\rightharpoonup}{\mathbf{b}}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right]
$$

Matrix operations can render the solution of a linear system much more efficient.

Sections in this Chapter

2.01 Gaussian Elimination

2.02 Summary of Matrix Algebra
2.03 Determinants and Inverse Matrices
2.04 Eigenvalues and Eigenvectors

2.01 Gaussian Elimination

Example 2.01.1

In quantum mechanics, the Planck length L_{P} is defined in terms of three fundamental constants:

- the universal constant of gravitation,
- Planck's constant,
- the speed of light in a vacuum,

$$
\begin{aligned}
& G=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2} \\
& h=6.62 \times 10^{-34} \mathrm{~J} \mathrm{~s}^{-1} \\
& c=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}
\end{aligned}
$$

The Planck length is therefore

$$
L_{P}=k G^{x} h^{y} c^{z}
$$

where k is a dimensionless constant and x, y, z are constants to be determined.
Also note that $1 \mathrm{~N}=1 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-2}$ and $1 \mathrm{~J}=1 \mathrm{Nm}=1 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-2}$.
Use dimensional analysis to find the values of x, y and z.

Let $\left[L_{P}\right]$ denote the dimensions of L_{P}.
Then $\left[L_{P}\right]=\left[k G^{x} h^{y} c^{z}\right]=[G]^{X}[h]^{y}[c]^{z}=\left(\mathrm{kg}^{-1} \mathrm{~m}^{3} \mathrm{~s}^{-2}\right)^{X}\left(\mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-1}\right)^{y}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)^{Z}$

$$
=\mathrm{kg}^{-x+y} \mathrm{~m}^{3 x+2 y+z} \mathrm{~s}^{-2 x-y-z}=\left[L_{P}\right]=\mathrm{m}^{1}
$$

This generates a linear system of three simultaneous equations for the three unknowns,

$$
\begin{array}{lll}
\mathrm{kg}: & -x+y & =0 \\
\mathrm{~m}: & 3 x+2 y+z=1 \\
\mathrm{~s}: & -2 x-y-z=0
\end{array}
$$

This can be re-written as the matrix equation $\mathrm{A} \mathbf{x}=\mathbf{b}$, where

$$
\mathrm{A}=\left[\begin{array}{rrr}
-1 & 1 & 0 \\
3 & 2 & 1 \\
-2 & -1 & -1
\end{array}\right], \quad \overrightarrow{\mathbf{x}}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right], \quad \overrightarrow{\mathbf{b}}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

Use Gaussian elimination (a sequence of row operations) on the augmented matrix
[A | b]:
$[\mathrm{A} \mid \stackrel{\rightharpoonup}{\mathbf{b}}]=\left[\begin{array}{rrr|r}-1 & 1 & 0 & 0 \\ 3 & 2 & 1 & 1 \\ -2 & -1 & -1 & 0\end{array}\right]$
Multiply Row 1 by (-1):
$\xrightarrow{R_{1} \times-1}\left[\begin{array}{rrr|r}1 & -1 & 0 & 0 \\ 3 & 2 & 1 & 1 \\ -2 & -1 & -1 & 0\end{array}\right]$
There is now a "leading one" in the top left corner.

Example 2.01.1 (continued)

From Row 2 subtract ($3 \times$ Row 1) and
to Row 3 add ($2 \times$ Row 1):

$$
\xrightarrow[R_{3}+2 R_{1}]{R_{2}-3 R_{1}}\left[\begin{array}{rrr|r}
1 & -1 & 0 & 0 \\
0 & 5 & 1 & 1 \\
0 & -3 & -1 & 0
\end{array}\right]
$$

All entries below the first leading one are now zero.
The next leading entry is a ' 5 '. Scale it down to a ' 1 '.
Multiply Row 2 by (1/5):

$$
\xrightarrow[R_{2} \times \frac{1}{5}]{ }\left[\begin{array}{rrr|r}
1 & -1 & 0 & 0 \\
0 & 1 & \frac{1}{5} & \frac{1}{5} \\
0 & -3 & -1 & 0
\end{array}\right]
$$

Clear the entry below the new leading one.
To Row 3 add ($3 \times$ Row 2):

$$
\xrightarrow[R_{3}+3 R_{2}]{ }\left[\begin{array}{rrr|r}
1 & -1 & 0 & 0 \\
0 & 1 & \frac{1}{5} & \frac{1}{5} \\
0 & 0 & -\frac{2}{5} & \frac{3}{5}
\end{array}\right]
$$

The next leading entry is a ' $-2 / 5$ '. Scale it down to a ' 1 '.
Multiply Row 3 by ($-5 / 2$):

$$
\xrightarrow[R_{3} \times-\frac{5}{2}]{ }\left[\begin{array}{rrr|r}
1 & -1 & 0 & 0 \\
0 & 1 & \frac{1}{5} & \frac{1}{5} \\
0 & 0 & 1 & -\frac{3}{2}
\end{array}\right]
$$

This matrix is in row echelon form (the first non-zero entry in every row is a one and all entries below every leading one in its column are zero). It is also upper triangular (all entries below the leading diagonal are zero).
The solution may be read from the echelon form, using back substitution:

$$
\begin{aligned}
& {\left[\begin{array}{rrr}
1 & -1 & 0 \\
0 & 1 & \frac{1}{5} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
0 \\
\frac{1}{5} \\
-\frac{3}{2}
\end{array}\right] \Rightarrow z=-\frac{3}{2} \Rightarrow y+\frac{1}{5} \times\left(-\frac{3}{2}\right)=\frac{1}{5} \Rightarrow y=\frac{1}{5} \times \frac{5}{2}=\frac{1}{2}} \\
& \Rightarrow x-\frac{1}{2}=0 \Rightarrow x=\frac{1}{2}
\end{aligned}
$$

Example 2.01.1 (continued)

An alternative strategy is to complete the reduction of the augmented matrix to reduced row echelon form (the first non-zero entry in every row is a one and all other entries are zero in a column that contains a leading one).

From Row 2 subtract ($1 / 5 \times$ Row 3):

$$
\xrightarrow[R_{2}-\frac{1}{5} R_{3}]{ }\left[\begin{array}{rrr|r}
1 & -1 & 0 & 0 \\
0 & 1 & 0 & \frac{1}{2} \\
0 & 0 & 1 & -\frac{3}{2}
\end{array}\right]
$$

To Row 1 add Row 2:

$$
\xrightarrow{R_{1}+R_{2}}\left[\begin{array}{rrr|r}
1 & 0 & 0 & \frac{1}{2} \\
0 & 1 & 0 & \frac{1}{2} \\
0 & 0 & 1 & -\frac{3}{2}
\end{array}\right]
$$

From this reduced row echelon matrix, the values of x, y and z may be read directly:

$$
\rightarrow\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{r}
\frac{1}{2} \\
\frac{1}{2} \\
-\frac{3}{2}
\end{array}\right] \Rightarrow x=y=\frac{1}{2}, \quad z=-\frac{3}{2}
$$

When a square linear system (same number of equations as unknowns) has a unique solution, the reduced row echelon form of the coefficient matrix is the identity matrix.

Therefore the functional form of the Planck length is

$$
L_{P}=k \sqrt{\frac{G h}{c^{3}}}=\frac{k}{c} \sqrt{\frac{G h}{c}}
$$

Dimensional analysis alone cannot determine the value of the constant k.
[Methods in quantum mechanics, beyond the scope of this course, can establish that the constant is $k=\frac{1}{2 \pi}$, so that $L_{P}=1.61620 \times 10^{-35} \mathrm{~m}$.]

Example 2.01.2

Find the solution (x, y, z, t) to the system of equations

$$
\begin{array}{rrr}
x+y & = & 5 \\
y+z & = & 7 \\
2 y+z+t & =10
\end{array}
$$

This is an under-determined system of equations (fewer equations than unknowns).
A unique solution is not possible. There will be either infinitely many solutions or no solution at all.

Reduce the augmented matrix to reduced row echelon form:

$$
\left[\begin{array}{rrrr|r}
1 & 1 & 0 & 0 & 5 \\
0 & 1 & 1 & 0 & 7 \\
0 & 2 & 1 & 1 & 10
\end{array}\right]
$$

A leading one exists in the top left entry, with zero elsewhere in the first column. A leading one exists in the second row. Clear the other entries in the second column.
From Row 3 subtract ($2 \times$ Row 2) and from Row 1 subtract Row 2:
$\xrightarrow[R_{3}-2 R_{2}]{R_{1}-R_{2}}\left[\begin{array}{rrrr|r}1 & 0 & -1 & 0 & -2 \\ 0 & 1 & 1 & 0 & 7 \\ 0 & 0 & -1 & 1 & -4\end{array}\right]$
Rescale the leading entry in Row 3 to a ' 1 '.
Multiply row 3 by (-1):
$\xrightarrow[R_{3} \times-1]{ }\left[\begin{array}{rrrr|r}1 & 0 & -1 & 0 & -2 \\ 0 & 1 & 1 & 0 & 7 \\ 0 & 0 & 1 & -1 & 4\end{array}\right]$
Clear the other entries in the third column.
From Row 2 subtract Row 3 and
to Row 1 add Row 3:
$\xrightarrow[R_{2}-R_{3}]{R_{1}+R_{3}}\left[\begin{array}{rrrr|r}1 & 0 & 0 & -1 & 2 \\ 0 & 1 & 0 & 1 & 3 \\ 0 & 0 & 1 & -1 & 4\end{array}\right]$
The leading ones are identified in this row reduced echelon form.

Example 2.01.2 (continued)

$$
\left[\begin{array}{rrrr}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
t
\end{array}\right]=\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right]
$$

The fourth column lacks a leading one. This means that the fourth variable, t, is a free parameter, in terms of which the other three variables may be expressed. We therefore have a one-parameter family of solutions,

$$
\begin{array}{ll}
& x-t=2, y+t=3, z-t=4 \\
\Rightarrow & x=2+t, y=3-t, z=4+t \\
\text { or } & (x, y, z, t)=(2,3,4,0)+(1,-1,1,1) t
\end{array}
$$

where t is free to be any real number.

The rank of a matrix is the number of leading ones in its echelon form.
If rank (A) < rank [A|b], then the linear system is inconsistent and has no solution.
If $\operatorname{rank}(A)=\operatorname{rank}[A \mid \mathbf{b}]=n$ (the number of columns in A), then the system has a unique solution for any such vector \mathbf{b}.

If $\operatorname{rank}(A)=\operatorname{rank}[A \mid b]<n$, then the system has infinitely many solutions, with a number of parameters $=(n-\operatorname{rank}(\mathrm{A}))=\left(\#\right.$ columns in A_{r} with no leading one $)$.

Example 2.01.3

Read the solution set ($x_{1}, x_{2}, \ldots, x_{n}$) from the following reduced echelon forms.
(a)

$$
\left[\begin{array}{rrrr|r}
1 & 0 & -2 & 1 & 1 \\
0 & 1 & 1 & 0 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \quad \operatorname{rank}(\mathrm{A})=\operatorname{rank}[\mathrm{A} \mid \mathbf{b}]=2, n=4
$$

Two-parameter family of solutions:

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(1,2,0,0)+(2,-1,1,0) x_{3}+(-1,0,0,1) x_{4}
$$

Example 2.01.3

(b)
$\left[\begin{array}{rrrr|r}1 & 0 & -2 & 1 & 1 \\ 0 & 1 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$

$$
\operatorname{rank}(\mathrm{A})<\operatorname{rank}[\mathrm{A} \mid \mathrm{b}] \Rightarrow \text { no solution }
$$

(c)
$\left[\begin{array}{rrr|r}1 & 0 & 0 & a \\ 0 & 1 & 0 & b \\ 0 & 0 & 1 & c \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
This is an over-determined system of five equations in three unknowns, but two of the five equations are superfluous and can be expressed in terms of the other three equations. In this case a unique solution exists regardless of the values of the numbers a, b, c.

The solution is

$$
\left(x_{1}, x_{2}, x_{3}\right)=(a, b, c)
$$

Note that software exists to eliminate the tedious arithmetic of the row operations. Various procedures exist in Maple and Matlab.

A custom program, available on the course web site at "www.engr.mun.ca/~ggeorge/9420/demos/", allows the user to enter the coefficients of a linear system as rational numbers, allows the user to perform row operations (but will not suggest the appropriate operation to use) and carries out the arithmetic of the chosen row operation automatically.

