Let $\left(\alpha_{i}, \beta_{i}\right)$ be the eigenvector associated with the eigenvalue λ_{i} of the coefficient matrix

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

Let c_{1}, c_{2} be arbitrary constants.

Case of real, distinct, negative eigenvalues (with $\lambda_{2}<\lambda_{1}<0$):
Two linearly independent solutions are

$$
(x(t), y(t))=\left(\alpha_{1} e^{\lambda_{1} t}, \beta_{1} e^{\lambda_{1} t}\right) \text { and }(x(t), y(t))=\left(\alpha_{2} e^{\lambda_{2} t}, \beta_{2} e^{\lambda_{2} t}\right)
$$

The general solution is

$$
(x(t), y(t))=\left(c_{1} \alpha_{1} e^{\lambda_{1} t}+c_{2} \alpha_{2} e^{\lambda_{2} t}, c_{1} \beta_{1} e^{\lambda_{1} t}+c_{2} \beta_{2} e^{\lambda_{2} t}\right)
$$

One can see that $\lim _{t \rightarrow \infty}(x(t), y(t))=(0,0)$.
All orbits therefore terminate at the critical point at the origin. The system is asymptotically stable.

If both arbitrary constants are zero, then we have the trivial solution $(x=y=0$ for all t).
If one of the arbitrary constants is zero (say c_{1}), then
$(x(t), y(t))=\left(c_{2} \alpha_{2} e^{\lambda_{2} t}, c_{2} \beta_{2} e^{\lambda_{2} t}\right) \Rightarrow y(t)=\frac{\beta_{2}}{\alpha_{2}} x(t)$
which is a straight line through the origin, of slope $\frac{\beta_{2}}{\alpha_{2}}$.
[The situation is similar if c_{2} is zero.]
We therefore obtain straight-line trajectories ending at the singular point, when exactly one of the arbitrary constants is zero.

If neither arbitrary constant is zero, then
$\frac{y(t)}{x(t)}=\frac{c_{1} \beta_{1} e^{\lambda_{1} t}+c_{2} \beta_{2} e^{\lambda_{2} t}}{c_{1} \alpha_{1} e^{\lambda_{1} t}+c_{2} \alpha_{2} e^{\lambda_{2} t}}=\frac{c_{1} \beta_{1}+c_{2} \beta_{2} e^{\left(\lambda_{2}-\lambda_{1}\right) t}}{c_{1} \alpha_{1}+c_{2} \alpha_{2} e^{\left(\lambda_{2}-\lambda_{1}\right) t}}=\frac{c_{1} \beta_{1} e^{-\left(\lambda_{2}-\lambda_{1}\right) t}+c_{2} \beta_{2}}{c_{1} \alpha_{1} e^{-\left(\lambda_{2}-\lambda_{1}\right) t}+c_{2} \alpha_{2}}$
Because $\lambda_{2}<\lambda_{1}<0$,
$\lim _{t \rightarrow-\infty} \frac{y(t)}{x(t)}=\lim _{t \rightarrow-\infty} \frac{c_{1} \beta_{1} e^{-\left(\lambda_{2}-\lambda_{1}\right) t}+c_{2} \beta_{2}}{c_{1} \alpha_{1} e^{-\left(\lambda_{2}-\lambda_{1}\right) t}+c_{2} \alpha_{2}}=\frac{\beta_{2}}{\alpha_{2}}$
and
$\lim _{t \rightarrow \infty} \frac{y(t)}{x(t)}=\lim _{t \rightarrow \infty} \frac{c_{1} \beta_{1}+c_{2} \beta_{2} e^{\left(\lambda_{2}-\lambda_{1}\right) t}}{c_{1} \alpha_{1}+c_{2} \alpha_{2} e^{\left(\lambda_{2}-\lambda_{1}\right) t}}=\frac{\beta_{1}}{\alpha_{1}}$
All orbits therefore come in from infinity parallel to the line $y=\frac{\beta_{2}}{\alpha_{2}} x$.
All orbits share the same tangent at the origin, $y=\frac{\beta_{1}}{\alpha_{1}} x$.
We obtain a stable node that is also asymptotically stable.

[The case illustrated here is $\alpha_{1}=1, \alpha_{2}=3, \beta_{1}=2, \beta_{2}=1, \lambda_{1}=-5, \lambda_{2}=-10$, which is generated from $\left.A=\left[\begin{array}{cc}-11 & +3 \\ -2 & -4\end{array}\right].\right]$

Case of real, distinct, positive eigenvalues (with $\lambda_{2}>\lambda_{1}>0$):
The analysis leads to the same phase space, except that the arrows are reversed.
The result is an unstable node.

Case of real, distinct eigenvalues of opposite sign (with $\lambda_{2}<0<\lambda_{1}$):

The general solution is

$$
\begin{gathered}
(x(t), y(t))=\left(c_{1} \alpha_{1} e^{\lambda_{1} t}+c_{2} \alpha_{2} e^{\lambda_{2} t}, c_{1} \beta_{1} e^{\lambda_{1} t}+c_{2} \beta_{2} e^{\lambda_{2} t}\right) \\
\lambda_{2}<0<\lambda_{1} \Rightarrow \lim _{t \rightarrow-\infty}(x(t), y(t)) \text { and } \lim _{t \rightarrow \infty}(x(t), y(t)) \quad \text { do not exist (infinite), }
\end{gathered}
$$

(with the exception of the orbit for $c_{1}=0$).
All orbits (except $c_{1}=0$) therefore move away from the critical point at the origin. The system is unstable.

If both arbitrary constants are zero, then we have the trivial solution $(x=y=0$ for all $t)$.
If one of the arbitrary constants is zero (say c_{1}), then
$(x(t), y(t))=\left(c_{2} \alpha_{2} e^{\lambda_{2} t}, c_{2} \beta_{2} e^{\lambda_{2} t}\right) \Rightarrow y(t)=\frac{\beta_{2}}{\alpha_{2}} x(t)$
which is a straight line through the origin, of slope $\frac{\beta_{2}}{\alpha_{2}}$.
[The situation is similar if c_{2} is zero.]
We therefore obtain straight-line trajectories when one of the arbitrary constants is zero. One of them $\left(c_{1}=0\right)$ ends at the singular point while the other begins there.

If neither arbitrary constant is zero, then
$\frac{y(t)}{x(t)}=\frac{c_{1} \beta_{1} e^{\lambda_{1} t}+c_{2} \beta_{2} e^{\lambda_{2} t}}{c_{1} \alpha_{1} e^{\lambda_{1} t}+c_{2} \alpha_{2} e^{\lambda_{2} t}}=\frac{c_{1} \beta_{1}+c_{2} \beta_{2} e^{\left(\lambda_{2}-\lambda_{1}\right) t}}{c_{1} \alpha_{1}+c_{2} \alpha_{2} e^{\left(\lambda_{2}-\lambda_{1}\right) t}}=\frac{c_{1} \beta_{1} e^{-\left(\lambda_{2}-\lambda_{1}\right) t}+c_{2} \beta_{2}}{c_{1} \alpha_{1} e^{-\left(\lambda_{2}-\lambda_{1}\right) t}+c_{2} \alpha_{2}}$
Because $\lambda_{2}<0<\lambda_{1}$,

$$
\lim _{t \rightarrow-\infty} \frac{y(t)}{x(t)}=\lim _{t \rightarrow-\infty} \frac{c_{1} \beta_{1} e^{-\left(\lambda_{2}-\lambda_{1}\right) t}+c_{2} \beta_{2}}{c_{1} \alpha_{1} e^{-\left(\lambda_{2}-\lambda_{1}\right) t}+c_{2} \alpha_{2}}=\frac{\beta_{2}}{\alpha_{2}}
$$

and
$\lim _{t \rightarrow \infty} \frac{y(t)}{x(t)}=\lim _{t \rightarrow \infty} \frac{c_{1} \beta_{1}+c_{2} \beta_{2} e^{\left(\lambda_{2}-\lambda_{1}\right) t}}{c_{1} \alpha_{1}+c_{2} \alpha_{2} e^{\left(\lambda_{2}-\lambda_{1}\right) t}}=\frac{\beta_{1}}{\alpha_{1}}$

All orbits therefore share the same asymptotes, $y=\frac{\beta_{2}}{\alpha_{2}} x$ (incoming) and $y=\frac{\beta_{1}}{\alpha_{1}} x$ (outgoing).

We obtain a saddle point, which is an unstable critical point.

[The case illustrated here is $\alpha_{1}=1, \alpha_{2}=3, \beta_{1}=2, \beta_{2}=1, \lambda_{1}=+5, \lambda_{2}=-5$, which is generated from $\left.A=\left[\begin{array}{ll}7 & -6 \\ 4 & -7\end{array}\right].\right]$

Case of real, equal, negative eigenvalues $\left(\lambda_{1}=\lambda_{2}<0\right)$ and $b=c=0$:

The system is uncoupled:

$$
\begin{aligned}
& \frac{d x}{d t}=a x \\
& \frac{d y}{d t}=d y
\end{aligned}
$$

and equal eigenvalues now require $a=d=\lambda$.
The general solution is $(x(t), y(t))=\left(c_{1} e^{\lambda t}, c_{2} e^{\lambda t}\right)$.
$\lambda<0 \Rightarrow \lim _{t \rightarrow-\infty}(|x(t)|,|y(t)|)=(\infty, \infty)$ and $\lim _{t \rightarrow \infty}(x(t), y(t))=(0,0)$.
All orbits therefore terminate at the critical point at the origin.
The system is asymptotically stable.
If both arbitrary constants are zero, then we have the trivial solution $(x=y=0$ for all t).
$c_{1} \neq 0 \Rightarrow \frac{y(t)}{x(t)}=\frac{c_{2}}{c_{1}} \quad \forall t$
and $c_{1}=0, c_{2} \neq 0 \Rightarrow x(t)=0 \quad \forall t$
The orbits are straight lines ending at the critical point at the origin.

The critical point is an asymptotically stable star-shaped node.

Additional Note:

The eigenvalues of any triangular matrix are the diagonal entries of that matrix:
The characteristic equation of $A=\left[\begin{array}{ll}a & b \\ 0 & d\end{array}\right]$ is $\operatorname{det}(A-\lambda I)=0$
$\Rightarrow\left|\begin{array}{cc}a-\lambda & b \\ 0 & d-\lambda\end{array}\right|=(a-\lambda)(d-\lambda)=0 \quad \Rightarrow \quad \lambda=a$ or d

Case of real, equal, negative eigenvalues $\left(\lambda_{1}=\lambda_{2}<0\right)$ and b, c not both zero:

The characteristic equation $\lambda^{2}-(a+d) \lambda+(a d-b c)=0$
has the discriminant $(a+d)^{2}-4(a d-b c)=(a-d)^{2}+4 b c=0$.
The solution of the characteristic equation simplifies to $\lambda=\frac{a+d}{2}$.
The general solution is $(x(t), y(t))=\left(\left(c_{1} \alpha_{1}+c_{2} \alpha_{2} t\right) e^{\lambda t},\left(c_{1} \beta_{1}+c_{2} \beta_{2} t\right) e^{\lambda t}\right)$.
$\lambda<0 \Rightarrow \lim _{t \rightarrow-\infty}(|x(t)|,|y(t)|)=(\infty, \infty)$ and $\lim _{t \rightarrow \infty}(x(t), y(t))=(0,0)$.
All orbits therefore terminate at the critical point at the origin.
The system is asymptotically stable.
If both arbitrary constants are zero, then we have the trivial solution $(x=y=0$ for all $t)$.
If $c_{2} \neq 0$, then $\frac{y(t)}{x(t)}=\frac{c_{1} \beta_{1}+c_{2} \beta_{2} t}{c_{1} \alpha_{1}+c_{2} \alpha_{2} t} \rightarrow \frac{\beta_{2}}{\alpha_{2}}$ as $t \rightarrow \pm \infty$
All orbits (except for $c_{2}=0$) therefore come in from infinity parallel to the line $y=\frac{\beta_{2}}{\alpha_{2}} x$, which is also a tangent at the origin. It can be shown that $\frac{\beta_{1}}{\alpha_{1}}=\frac{\beta_{2}}{\alpha_{2}}$ when $c_{2}=0$, so that the trajectories for $c_{1}=0$ and $c_{2}=0$ are both $y=\frac{\beta_{2}}{\alpha_{2}} x$.

Neither eigenvalue can be zero, otherwise $(0,0)$ is not the only critical point (as shown on page 4.14).

Case of real, equal, positive eigenvalues ($\lambda_{1}=\lambda_{2}>0$)
The analysis leads to the same phase planes as in the case of real equal negative eigenvalues, but the signs of the arrows are reversed and the result is an unstable node.

Case of complex conjugate pair of eigenvalues with negative real part

The eigenvalues (roots of the characteristic equation) are

$$
\lambda_{1}=a+j b, \quad \lambda_{2}=a-j b, \quad(a<0) .
$$

The general solution has the form

$$
\begin{aligned}
& x(t)=\left[c_{1}\left(A_{1} \cos b t-A_{2} \sin b t\right)+c_{2}\left(A_{1} \sin b t+A_{2} \cos b t\right)\right] e^{a t} \\
& y(t)=\left[c_{1}\left(B_{1} \cos b t-B_{2} \sin b t\right)+c_{2}\left(B_{1} \sin b t+B_{2} \cos b t\right)\right] e^{a t}
\end{aligned}
$$

Using the definitions
$A=\sqrt{\left(c_{2} A_{1}-c_{1} A_{2}\right)^{2}+\left(c_{1} A_{1}+c_{2} A_{2}\right)^{2}}, B=\sqrt{\left(c_{2} B_{1}-c_{1} B_{2}\right)^{2}+\left(c_{1} B_{1}+c_{2} B_{2}\right)^{2}}$
$\cos \alpha=\frac{c_{1} A_{1}+c_{2} A_{2}}{A}, \quad \sin \alpha=\frac{c_{2} A_{1}-c_{1} A_{2}}{A}, \cos \beta=\frac{c_{1} B_{1}+c_{2} B_{2}}{B}, \quad \sin \beta=\frac{c_{2} B_{1}-c_{1} B_{2}}{B}$
the general solution can be written more compactly as

$$
\begin{array}{r}
(x(t), y(t))=\left(A e^{a t} \cos (b t+\alpha), B e^{a t} \cos (b t+\beta)\right) \\
a<0 \Rightarrow \lim _{t \rightarrow-\infty}(|x(t)|,|y(t)|)=(\infty, \infty) \text { and } \lim _{t \rightarrow \infty}(x(t), y(t))=(0,0)
\end{array}
$$

If $x(t)=0$ then $\quad b t+\alpha=\frac{\pi}{2}+n \pi \quad(n \in \mathbb{Z})$
If $y(t)=0 \quad$ then $\quad b t+\beta=\frac{\pi}{2}+n \pi \quad(n \in \mathbb{Z})$
$\frac{y(t)}{x(t)}=\frac{B \cos (b t+\beta)}{A \cos (b t+\alpha)}$
$\frac{y(t)}{x(t)}$ is periodic, with period $\frac{2 \pi}{b}$.
The orbits spiral in to the origin.
We have an asymptotically stable spiral, also known as a stable focus.

Case of complex conjugate pair of eigenvalues with positive real part

The analysis leads to the same phase planes as in the case of negative real part, but the signs of the arrows are reversed and the result is an unstable focus.

Case of complex conjugate pair of eigenvalues with zero real part (pure imaginary)
The eigenvalues (roots of the characteristic equation) are

$$
\lambda_{1}=-j b, \quad \lambda_{2}=+j b
$$

The general solution has the compact form

$$
(x(t), y(t))=(A \cos (b t+\alpha), B \cos (b t+\beta))
$$

If $\alpha=0$ and $\beta=-\frac{\pi}{2}$, then

$$
(x(t), y(t))=(A \cos b t, B \sin b t) \Rightarrow \frac{x^{2}}{A^{2}}+\frac{y^{2}}{B^{2}}=1
$$

so that the orbits are ellipses, centred on the critical point at the origin.
This is a stable centre.

Other choices of α and β also lead to concentric sets of ellipses, but rotated with respect to the coordinates axes.

Note that this is the only case of a stable critical point that is not asymptotically stable.

Summary for the Linear System

$$
\frac{d x}{d t}=a x+b y, \quad \frac{d y}{d t}=c x+d y, \quad(a, b, c, d=\text { constants })
$$

Characteristic equation:

$$
\lambda^{2}-(a+d) \lambda+(a d-b c)=0
$$

Discriminant

$$
D=(a+d)^{2}-4(a d-b c)=(a-d)^{2}+4 b c
$$

Roots of characteristic equation (= eigenvalues of $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$):

$$
\lambda=\frac{(a+d) \pm \sqrt{D}}{2}
$$

Cases:

$a+d$	D	other condition	λ	Type of point
$a+d<0$	$D>0$	$a d-b c>0$	real, distinct negative	Stable node
$a+d<0$	$D=0$	$b=c=0$	real, equal negative	Stable star shape
$a+d<0$	$D=0$	b, c not both 0	real, equal negative	Stable node
$a+d<0$	$D<0$		complex conjugate pair	Stable focus [spiral]
$a+d=0$	$D<0$	$a d-b c>0$	real, distinct positive	Unstable node
$a+d>0$	$D>0$	$b>0 c<0$	real, distinct opposite signs	Unstable saddle point
$(a n y)$	$D=0$	$b=c=0$	real, equal positive	Unstable star shape
$a+d>0$	$D=0$	b, c not both 0	real, equal positive	Unstable node
$a+d>0$	$D<0$		complex conjugate pair	Unstable focus [spiral]
$a+d>0$				

Note that $a d-b c=\operatorname{det} A$ and that $a+d=$ the trace of the matrix A.
In brief, if the real parts of both eigenvalues are negative (or both zero), then the origin is stable. Otherwise it is unstable.
[See also the example at "www.engr.mun.ca/~ggeorge/9420/demos/phases.html".]

Example 4.05.1

Find the nature of the critical point of the system

$$
\frac{d x}{d t}=4 x-3 y, \quad \frac{d y}{d t}=5 x-4 y
$$

and find the general solution.

The coefficient matrix is $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{ll}4 & -3 \\ 5 & -4\end{array}\right)$.
$\operatorname{trace}(A)=a+d=4+(-4)=0$
$D=(a-d)^{2}+4 b c=(4+4)^{2}+4(-3)(5)=64-60=+4>0$
$\operatorname{det} A=\left|\begin{array}{ll}4 & -3 \\ 5 & -4\end{array}\right|=-16+15<0$
$D>0$ and $a d-b c<0 \Rightarrow \lambda$ are real with opposite signs and the critical point is a saddle point (unstable).

Solving the system:

$$
\begin{gathered}
\lambda=\frac{(a+d) \pm \sqrt{D}}{2}=\frac{0 \pm \sqrt{4}}{2}= \pm 1 \\
(x(t), y(t))=\left(c_{1} \alpha_{1} e^{-t}+c_{2} \alpha_{2} e^{t}, c_{1} \beta_{1} e^{-t}+c_{2} \beta_{2} e^{t}\right)
\end{gathered}
$$

where $\binom{\alpha_{1}}{\beta_{1}}$ is the eigenvector associated with the eigenvalue $\lambda=-1$ and $\binom{\alpha_{2}}{\beta_{2}}$ is the eigenvector associated with the eigenvalue $\lambda=+1$.
To find the eigenvectors, find non-zero solutions to the equation

$$
\left(\begin{array}{cc}
a-\lambda & b \\
c & d-\lambda
\end{array}\right)\binom{\alpha}{\beta}=\binom{0}{0}
$$

At $\lambda=-1$:
$\left(\begin{array}{cc}4+1 & -3 \\ 5 & -4+1\end{array}\right)\binom{\alpha}{\beta}=\left(\begin{array}{cc}5 & -3 \\ 5 & -3\end{array}\right)\binom{\alpha}{\beta}=\binom{0}{0}$
Any non-zero choice such that $5 \alpha-3 \beta=0$ will provide an eigenvector.
Select $\binom{\alpha_{1}}{\beta_{1}}=\binom{3}{5}$.

Example 4.05.1 (continued)

At $\lambda=+1$:
$\left(\begin{array}{cc}4-1 & -3 \\ 5 & -4-1\end{array}\right)\binom{\alpha}{\beta}=\left(\begin{array}{ll}3 & -3 \\ 5 & -5\end{array}\right)\binom{\alpha}{\beta}=\binom{0}{0}$
Any non-zero choice such that $\alpha-\beta=0$ will provide an eigenvector.
Select $\binom{\alpha_{2}}{\beta_{2}}=\binom{1}{1}$.
The general solution is

$$
(x(t), y(t))=\left(3 c_{1} e^{-t}+c_{2} e^{t}, 5 c_{1} e^{-t}+c_{2} e^{t}\right)
$$

[It is simple to check that $(4 x-3 y, 5 x-4 y)$ is indeed equal to (\dot{x}, \dot{y})].

Also note that
$\frac{y(t)}{x(t)}=\frac{5 c_{1} e^{-t}+c_{2} e^{t}}{3 c_{1} e^{-t}+c_{2} e^{t}} \Rightarrow \lim _{t \rightarrow-\infty} \frac{y(t)}{x(t)}=\frac{5}{3} \quad\left(c_{1} \neq 0\right) \quad$ and $\quad \lim _{t \rightarrow+\infty} \frac{y(t)}{x(t)}=1 \quad\left(c_{2} \neq 0\right)$
so that all orbits for which both c_{1} and c_{2} are non-zero share the same asymptotes, $3 y=5 x$ (which is the incoming orbit, when $c_{2}=0$) and $y=x$ (which is the outgoing orbit, when $c_{1}=0$).

A few representative orbits and the two asymptotes are plotted in this phase space diagram:

Example 4.05.2

Find the nature of the critical point of the system

$$
\frac{d x}{d t}=-2 x+y, \quad \frac{d y}{d t}=x-2 y
$$

and find the general solution.

The coefficient matrix is $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{rr}-2 & 1 \\ 1 & -2\end{array}\right)$.
$\operatorname{trace}(A)=a+d=-2+-2=-4<0$.
$D=(a-d)^{2}+4 b c=(-2+2)^{2}+4(1)(1)=0+4=4>0$
$\Rightarrow \lambda$ are real, distinct and negative and
$\operatorname{det} A=a d-b c=4-1=3>0 \Rightarrow$ the critical point is a stable node.
Solving the system:

$$
\begin{aligned}
& \lambda=\frac{(a+d) \pm \sqrt{D}}{2}=\frac{-4 \pm \sqrt{4}}{2}=-2 \pm 1=-3,-1 \\
& (x(t), y(t))=\left(c_{1} \alpha_{1} e^{-3 t}+c_{2} \alpha_{2} e^{-t}, c_{1} \beta_{1} e^{-3 t}+c_{2} \beta_{2} e^{-t}\right)
\end{aligned}
$$

where $\binom{\alpha_{1}}{\beta_{1}}$ is the eigenvector associated with the eigenvalue $\lambda=-3$ and $\binom{\alpha_{2}}{\beta_{2}}$ is the eigenvector associated with the eigenvalue $\lambda=-1$.
To find the eigenvectors, find non-zero solutions to the equation

$$
\left(\begin{array}{cc}
a-\lambda & b \\
c & d-\lambda
\end{array}\right)\binom{\alpha}{\beta}=\binom{0}{0}
$$

At $\lambda=-3$:
$\left(\begin{array}{cc}-2+3 & 1 \\ 1 & -2+3\end{array}\right)\binom{\alpha}{\beta}=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)\binom{\alpha}{\beta}=\binom{0}{0}$
Any non-zero choice such that $\alpha+\beta=0$ will provide an eigenvector.
Select $\binom{\alpha_{1}}{\beta_{1}}=\binom{1}{-1}$.
At $\lambda=-1$:
$\left(\begin{array}{cc}-2+1 & 1 \\ 1 & -2+1\end{array}\right)\binom{\alpha}{\beta}=\left(\begin{array}{cc}-1 & 1 \\ 1 & -1\end{array}\right)\binom{\alpha}{\beta}=\binom{0}{0}$
Any non-zero choice such that $-\alpha+\beta=0$ will provide an eigenvector.
Select $\binom{\alpha_{2}}{\beta_{2}}=\binom{1}{1}$.

Example 4.05.2 (continued)

The general solution is

$$
(x(t), y(t))=\left(c_{1} e^{-3 t}+c_{2} e^{-t},-c_{1} e^{-3 t}+c_{2} e^{-t}\right)
$$

[It is simple to check that $(-2 x+y, x-2 y)$ is indeed equal to (\dot{x}, \dot{y})].

Also note that
$\frac{y(t)}{x(t)}=\frac{-c_{1} e^{-3 t}+c_{2} e^{-t}}{c_{1} e^{-3 t}+c_{2} e^{-t}}=\frac{-c_{1} e^{-2 t}+c_{2}}{c_{1} e^{-2 t}+c_{2}}=\frac{-c_{1}+c_{2} e^{2 t}}{c_{1}+c_{2} e^{2 t}}$
$\Rightarrow \lim _{t \rightarrow-\infty} \frac{y(t)}{x(t)}=-1 \quad\left(c_{1} \neq 0\right) \quad$ and $\lim _{t \rightarrow+\infty} \frac{y(t)}{x(t)}=1 \quad\left(c_{2} \neq 0\right)$
and $\lim _{t \rightarrow \infty}(x(t), y(t))=\lim _{t \rightarrow \infty}\left(c_{1} e^{-3 t}+c_{2} e^{-t},-c_{1} e^{-3 t}+c_{2} e^{-t}\right)=(0,0)$
so that all orbits for which both c_{1} and c_{2} are non-zero come in from a direction parallel to $y=-x$ (which is the orbit when $c_{2}=0$) and share the same tangent at the origin, $y=x$ (which is the orbit when $c_{1}=0$).

A few representative orbits and the common tangent are plotted in this phase space diagram:

