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4.06 Linear Approximation to a System of Non-Linear ODEs (2)    
 
From sections 4.02 and 4.03, the non-linear system  

  ( ) ( ), , ,dx dyx P x y y Q x y
dt dt

= = = =  (1) 

with critical point at (0, 0) may be expressed as  

  
( )
( )

1

1

,

,

x ax b y P x y

y cx d y Q x y

= + +

= + +
 (2) 

where  a, b, c, d  are all constants and 

( ) ( )

( )
( ) ( )

( )1 1

2 2 2 2, 0,0 , 0,0

, ,
lim 0 and lim 0

x y x y

P x y Q x y

x y x y→ →
= =

+ +
. 

   
Near the critical point (0, 0), this system may be approximated by the linear system  

  
x ax b y
y cx d y
= +
= +

 (3) 

 
Effect of Small Perturbations   
 
Small perturbations in the values of the coefficients  a, b, c, d  are reflected in small 
changes in the eigenvalues  λ.    
 
If the eigenvalues are a pure imaginary pair,  λ  = ± jv, 
then the critical point is a centre.   The effect of small 
changes in the coefficients will change the eigenvalues 
to the complex conjugate pair  λ'  = u' ± jv', where u' is 
small in magnitude and v' is close to v.    
 
The trajectories of the new system are likely to be 
spirals.   The critical point will be an asymptotically 
stable focus if u' < 0, a stable (but not asymptotically 
stable) centre if  u' = 0,  but it will be an unstable focus 
if u' > 0. 

 
Therefore small perturbations in a linear system with 
pure imaginary eigenvalues are likely to result in 
radical changes in the trajectories (orbits) and may 
change the stable system into an unstable system. 
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If the eigenvalues are a real equal pair,  λ1 =  λ2, then a 
slight perturbation is likely to separate the roots into 
distinct values.   If those values are still real, then the 
critical point remains a node. 
 
 
 
 
 
If the perturbed eigenvalues are a complex conjugate 
pair, then the nature of the trajectories will change into 
spirals and the critical point changes from a node into a 
focus. 
 
However, in both cases, an asymptotically stable 
critical point remains asymptotically stable after a small 
perturbation, while an unstable critical point remains 
unstable. 
 
In all other cases, a slight perturbation leaves the sign of the real part of both eigenvalues 
unchanged and affects neither the type of critical point nor the overall type of the orbits. 
 
These results are summarized in the two following theorems. 
 
Poincaré’s Theorem:  
 
The singularities of the non-linear system (2) are identical to the singularities of the linear 
system (3), except for the cases 
 
D < 0  and  a + d = 0, which is a centre in the linear case, but may be a centre or a focus 
in the non-linear case; and  
D = 0, which is either a node or a focus in the non-linear case. 
 
Theorem on stability of the singularity at (0, 0):  
 
 Linear approximation     Non-linear system 
 
 asymptotically stable     asymptotically stable 
 
 unstable     unstable 
 
 stable but not asymptotically stable  any (unstable, stable or  
       asymptotically stable) 
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Example 4.06.1    
 
Perform a stability analysis on the system  

2 2, 2d x d y 6x x xy y xy y
dt dt

= − + = − −  

 
 
Find the critical points: 
 

2 20 0 and 2d x d y x x xy y xy y
dt dt

= = ⇒ − + = − − =6 0

0

 

( ) ( )1 0 and 2 6x x y y x y⇒ − + = − − =  
This generates four solutions: 

( ) ( )0 and 0 , 0,0x y x y= = ⇒ =  

( ) ( )1
30 and 2 6 0 , 0,x x y x y= − − = ⇒ =  

( ) ( )1 0 and 0 ,x y y x y− + = = ⇒ = 1,0  

( ) ( )8 1
7 71 0 and 2 6 0 ,x y x y x y− + = − − = ⇒ = ,  

Linearize the system near each critical point. 
 
Near the critical point (0, 0), it is obvious that the linear approximation to the system is 

, 2d x d yx y
dt dt

= =  

This is an uncoupled system of ODEs, whose general solution is quickly found (by direct 
integration or by the results on page 4.30) to be 

( ) ( )( ) ( )1 2
2, ,t tx t y t c e c e=  

The critical point (0, 0) is an 
unstable node. 
 
Also note that  y  = k x2, so that the 
solutions are parabolas all sharing 
the same vertex at the origin, 
except for the lines x = 0 (from 
c1 = 0) and y = 0 (from c2 = 0).   
 
The orbits all begin at the origin 
and move away, (a hallmark of an 
unstable node). 
 
This diagram is valid for the linear 
approximation everywhere, but is 
valid only in the immediate neighbourhood of (0, 0) for the non-linear system. 
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Example 4.06.1   (continued) 
 
( ) ( )2 2, , , 2P x y x x xy Q x y y xy y= − + = − − 6  

1 2P Px y x
x y

∂ ∂
⇒ = − + =

∂ ∂
 

and 2 12Q Qy x
x y

∂ ∂
= − = − −

∂ ∂
y  

Near a critical point (a, b), the linear approximation to the system is 

( ) ( )

( ) ( )

, ,

, ,

1 2
2 12

a b a b

a b a b

P P
x yx x a a b a x a

y y b b a b y bQ Q
x y

⎛ ⎞∂ ∂
⎜ ⎟
∂ ∂⎜ ⎟ − − + −⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞

= =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟− − − − −∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎜ ⎟
⎜ ⎟∂ ∂
⎝ ⎠

 

 
Near the critical point ( 1

30, ) , the linear approximation to the system is 

1 4
3 3

1 11 12 1
3 33 3 3

1 0 0

2 2

x xx
y yy

⎛ ⎞ ⎛ ⎞+ ⎛ ⎞ ⎛ ⎞⎛ ⎞
= ⎜ ⎟ = ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟− −− − − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 

A simple change of variables to ( ) ( )1
3, ,x z x y= −  leads to  

4
3
1
3

0

2
x x
z z

⎛ ⎞⎛ ⎞ ⎛ ⎞
= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎝ ⎠

 

The matrix is triangular, allowing us to identify the eigenvalues immediately. 
The eigenvalues are of opposite sign (+4/3  and –2). 
Therefore the critical point at ( 1

30, )  is an unstable saddle point. 

From page 4.30,  

( ) ( ) ( )2 22 104
3 34 2 0D a d bc= − + = + + =  

The eigenvector corresponding to eigenvalue λ = –2 is 

1

1

α
β
⎛ ⎞

=⎜ ⎟
⎝ ⎠

any non-zero multiple of 
( )

10 10
3 3

0122 131
3

a d D

c

⎛ ⎞−⎛ ⎞− − ⎜ ⎟ ⎛ ⎞⎜ ⎟ ⎜ ⎟= = − ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎜ ⎟ −⎜ ⎟⎝ ⎠ ⎝ ⎠

, 

 
The eigenvector corresponding to eigenvalue λ = +4/3 is 

2

2

α
β
⎛ ⎞

=⎜ ⎟
⎝ ⎠

any non-zero multiple of  
( )

10 10
3 3

10122 131
3

a d D

c

⎛ ⎞+⎛ ⎞− + ⎜ ⎟ ⎛ ⎞⎜ ⎟ ⎜ ⎟= = ⎜ ⎟⎜ ⎟ −⎜ ⎟ ⎝ ⎠⎜ ⎟ −⎜ ⎟⎝ ⎠ ⎝ ⎠
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Example 4.06.1   (continued) 
 
The asymptotes are therefore x = 0 (corresponding to c1 = 0; inward because 1 0λ < ) and  

( 1
310x y= − − ) , (corresponding to c2 = 0; outward because 2 0λ > ).   This is sufficient 

to sketch the phase portrait, even without the general solution. 
 
The general solution near the critical point ( )1

30,  is 

( ) ( )( ) ( ) ( )( ) 1 1 2

4 4
3 3 21

3, , 10 ,
t t tx t z t x t y t c e c e c e−⎛ ⎞= − = − +⎜ ⎟

⎝ ⎠
 

where   c1, c2  are arbitrary constants. 
 
All trajectories (except 
for c2 = 0) therefore come 
in from infinity near the 
asymptote x = 0 (where  
c1 = 0)  
and  
all trajectories (except for 
c1 = 0) return to infinity 
near the asymptote 

1 1
3 10y x− = −  

(where c2 = 0). 
 
The diagram is valid for 
the linear approximation 
everywhere, but is valid 
only in the immediate 
neighbourhood of ( )1

30,  

for the non-linear system. 
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Example 4.06.1   (continued) 
 
Near the critical point (1, 0), the linear approximation to the system is 

1 2 1 1 1 1 1
0 2 1 0 1

x x x
y y y

− − −⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞
= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

−

)1,

 

Change variables to ( ) .   Then (,w y x y= −

1 1
0 1

w w
y y

−⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
 

The matrix is triangular, with eigenvalues of opposite sign (–1  and +1). 
Therefore the critical point at (1, 0) is also a[n unstable] saddle point. 

( ) ( )2 24 1 1 0D a d bc= − + = − − + = 4  

1

1

α
β
⎛ ⎞

=⎜ ⎟
⎝ ⎠

any non-zero multiple of 
( ) 2 2 1

222 00

a d D

c

⎛ ⎞ − −− − ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟= = − ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎜ ⎟ ⎝ ⎠⎝ ⎠

, 

c = 0, so the alternative form is needed for the other eigenvector: 

2

2

α
β
⎛ ⎞

=⎜ ⎟
⎝ ⎠

any non-zero multiple of  ( )
1 1

2 2 2
22

b

d a D

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟= =+− + ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎜ ⎟ ⎝ ⎠⎝ ⎠

  

The general solution near the critical point (1, 0) is 

( ) ( )( ) ( ) ( )( ) ( )1 2 2, 1, ,t tw t y t x t y t c e c e c e2 t−= − = +  
where   c1, c2  are arbitrary constants. 
 
All trajectories (except for c1 = 0) 
therefore come in from infinity 
near the asymptote y = 0 (where  
c2 = 0)  
and  
all trajectories (except for c2 = 0) 
return to infinity near the 
asymptote y = 2(x – 1) (where  
c1 = 0). 
 
 
 
 
Again, the diagram is valid for the linear approximation everywhere, but is valid only in 
the immediate neighbourhood of (1, 0) for the non-linear system. 
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Example 4.06.1   (continued) 
 
Near the critical point ( 8 1

7 7, ) , the linear approximation to the system is 

7 16 1 8 8 8 8 8
7 7 7 7 7
1 14 8 12 1 1 6 1

7 7 7 7 7

x xx
y y y

− + −⎛ ⎞⎛ ⎞ ⎛− −⎜ ⎟⎜ ⎟ ⎜⎛ ⎞
= =⎜ ⎟⎜ ⎟ ⎜⎜ ⎟ − − − − −⎜ ⎟⎜ ⎟ ⎜⎝ ⎠ − −⎜ ⎟⎜ ⎟ ⎜
⎝ ⎠⎝ ⎠ ⎝

7

7

⎞⎛ ⎞
⎟⎜ ⎟
⎟⎜ ⎟
⎟⎜ ⎟⎟⎜ ⎟
⎠⎝ ⎠

 

 
Change variables to ( ) ( )8 1

7 7, ,w z x y= − −  

8 81
1 67

w w
z z

−⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎝ ⎠

 

 

( )
2

2 8 6 8 1 28 44 4
7 7 7 49

D a d bc − + −⎛ ⎞ ⎛ ⎞⎛ ⎞= − + = + = − = −⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ 7

 

D < 0   and   (a + d) < 0    ⇒   the critical point is an asymptotically stable focus. 

The eigenvalues, which are the solutions to 
8 8
7 7

61
7 7

det 0
λ

λ

⎛ ⎞− −
=⎜ ⎟

⎜ ⎟− − −⎝ ⎠
, are 

( ) 14 28 71
2 14

a d D
jλ

+ ± − ± −
= = = −

7
±  

Using the formula on page 4.30,   u = –1, 1 7 6, 1
7 77

v u d 1
7

= = − = − + = − . 

( ) ( )( ) ( ) ( )( )

3 4 3

8 1
7 7,

1 1 1 1 1cos sin cos sin , cos sin
7 7 77 7 7 7 7 7 7 7

,

t

w t z t x t y t

t t t t te c c c c−

= − − =

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛− − + − − +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠ ⎝⎝ ⎠

4
t ⎞
⎟
⎠

 

Redefining the arbitrary constants as 5 3 6
1 1and
7 7

c c c= − = − 4c ,  

the general solution near the critical point ( )8 1
7 7,  is  

( ) ( )( ) ( ) ( )( )

5 6 5

8 1
7 7,

cos 7 sin 7 cos sin , cos sin
7 7 7 7 7

,

t

w t z t x t y t

t t t t te c c c c−

= − − =

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛+ + − + +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠ ⎝⎝ ⎠

6 7
t ⎞
⎟
⎠

 

where   c5, c6  are arbitrary constants. 
 
All trajectories spiral in to the critical point [a phase portrait for the linear approximation 
is on the next page]. 
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Example 4.06.1   (continued) 
 
 

 
 
 
Maple produces the following direction field plots: 
 

 
One can clearly see trajectories flowing outward from the unstable node at the origin in 
all directions.   The natures of the other critical points are somewhat less obvious.   
Zooming in to the neighbourhood of one of the saddle points and to the neighbourhood of 
the stable focus produces the next pair of diagrams: 
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Example 4.06.1   (continued) 
  

 
 

stepsize=.01, colour=red,  

Maple can also superimpose some trajectories on these phase portraits: 
 

 
Maple commands for this plot: 
 
 
> with(DEtools): 
 
> phaseportrait( 
[diff(x(t),t) =  
x(t) - x(t)^2 + x(t)*y(t),  
diff(y(t),t) =  
2*y(t) - x(t)*y(t) - 6*y(t)^2],  
[x(t), y(t)], t=-10..10,  
[[x(0)=0.1, y(0)=0.02],  
[x(0)=0.8, y(0)=-0.02],  
[x(0)=1.2, y(0)=0.02],  
[x(0)=0.05, y(0)=0.3], 
[x(0)=0.05, y(0)=0.4], 
[x(0)=1.2, y(0)=-0.02]], 
x=-0.2..1.4, y=-0.2..0.5,  

linecolour=[blue, cyan, magenta, sienna, orange, black], 
title=`Example 4.06.1  Non-Linear Solution`); 



ENGI 9420 4.06  -  Linear Approximation (2) Page 4.41 
 

 

Example 4.06.2    
 
Perform a stability analysis on the system  

( ) ( )2 2 2 21 , 1d x d yy x x y x y x y
dt dt

= + − − = − + − −  

 
 
Find the critical points: 
 

Clearly (x, y) = (0, 0) satisfies 0d x d y
dt dt

= = . 

0 0d x d y x y
dt dt

= = = ⇒ =  

0 0d x d y y x
dt dt

= = = ⇒ =  

If , then at any critical point 0 and 0x ≠ y ≠
0( ) ( )2 2 2 21 1y x x y x y x y+ − − = − + − − =  

( ) ( )2 2 2 21 and 1y x x y x y x y⇒ = − − − = − −  

( )
2

2 21 1x y yx y
y x x

⎛ ⎞⇒ − − = − = ⇒ = −⎜ ⎟
⎝ ⎠

 

which has no solution for real (x, y). 
 
Therefore the only critical point is (0, 0). 
 
The linear approximation to the non-linear system is  

1 1
1 1

x x
y y

⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠

 

 
( ) ( ) ( )( )2 24 1 1 4 1 1 4D a d bc= − + = − + − = − < 0  

 (a + d)  =  2  > 0    ⇒   the critical point is an unstable focus. 
 
Using the formula on page 4.30,  

1 , 0 , 1
2 2

a d a d Du u d v+ −
= = − = = =

2
−

=     

( ) ( )( ) ( )3 4 3 4, sin cos , cos sintx t y t e c t c t c t c t= − +  
and   c3, c4 are [real] arbitrary constants. 
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Example 4.06.2   (continued) 
 

Solution in the neighbourhood of the only critical point (0, 0): 

 
 
Now consider the distance r of any point (x, y) from the critical point (0, 0): 
 

2 2 2 2 2 2dr dx dyr x y r x y
dt dt dt

= + ⇒ = +  [chain rule] 

From the original non-linear system: 

( )( ) ( )( )2 2 2 21 1drr x y x x y y x y x y
dt

= + − − + − + − −  

( ) ( ) ( )2 2 2 2 2 21 1 1xy x r xy y r r r= + − − + − = −  

( ) ( )
( )

2 0 1
1

0 1
rdr r r
rdt

< >⎧⎪⇒ = − ⎨ > <⎪⎩
 

Therefore solutions starting closer than one unit to the critical point spiral out, but 
solutions starting further away than one unit approach the critical point.   A solution on 
the circle  r = 1 never changes its distance from the origin and stays on that circle, but is 
not stationary (because the only critical point is at (0, 0), not on that circle). 
 
Note that  x2 + y2  =  1  is a solution to the non-linear equation:  

( ) ( )2 2 2 21 and 1d x d yy x x y y x y x y
dt dt

= + − − = = − + − − = − x  

d y d y d x x
d x dt dt y

⇒ = ÷ = −  

But 2 2 1 2 2 0dy dy xx y x y
dx dx y

+ = ⇒ + = ⇒ = −  

No other solution may cross this solution. 
Therefore all non-trivial solutions approach the unit circle in the limit as t → ∞. 
 
The unit circle here is an example of a limit cycle.  
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Example 4.06.2   (continued) 
 

 
Further notes:  
 
Let  u  =  r2,  then  du  =  2r dr  and  
 

( ) ( ) ( )
2 2 11 1

2 1
dr du dur r r u u
dt dt u u

= − ⇒ = − ⇒ =
−

2 dt  

( )1 1 2 1 ln ln 1 2
1

du dt u u t C
u u

⎛ ⎞⇒ + = ⇒ − − = +⎜ ⎟−⎝ ⎠ ∫∫  

1
2 2ln 2

1 1
t C tu ut C e c e

u u
+⎛ ⎞ = + ⇒ = =⎜ ⎟− −⎝ ⎠

 

( )1 1 1
2 2 21t t tu c e u c e c e u c e⇒ = − ⇒ + = 1

2t  

( )2 2
1

2 11 1, wheretc e u c
c

−⇒ + = =  

( )
2 2

2 2
1 1

1 1
t t

u r t
c e c e

− −
⇒ = ⇒ =

+ +
 

If  r(0) = ro, then  
2 2

o o
1 1 22 2

o o

2 1
1 1

t r ruc e c c
u r

−
= ⇒ = ⇒ =

− − r
 

Therefore  

( )
2

o
2

o

2

1

11 t
r t

r e
r

−
=

⎛ ⎞−
+ ⎜ ⎟
⎝ ⎠
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Example 4.06.2   (continued) 
 
Also note that, from the polar coordinate system,  
( ) (, cos , six y r r )nθ θ=  

( ) ( ), cos sin , sin cosx y r r r rθ θ θ θ θ θ⇒ = − +  

( ) ( ) ( ) ( )cos sin cos cos sin cos sin sinxy yx r r r r r r r rθ θ θ θ θ θ θ θ⇒ − = + − + θ θ  

( )2 2 2 2cos sinr rθ θ θ θ= + =  
But the non-linear system is  
( ) ( ) ( )( )2 2, 1 , 1x y y x r x y r= + − − + −  

( ) ( ) ( )2 2 2 2 2 21 1 2xy yx x xy r y xy r x y r⇒ − = − + − − − − = − + = −  

Therefore   2 2 1r r tθ θ θ= − ⇒ = − ⇒ = − +C
 
All paths move clockwise with constant angular speed. 
 
In Cartesian coordinates all orbits can therefore be described by  

( ) ( )( ) ( ) ( )( )o o2
o

2
o

2

1, cos ,
11 t

x t y t t t
r e

r

θ θ
−

= −
⎛ ⎞−

+ ⎜ ⎟
⎝ ⎠

sin− −  

where   (x(0), y(0))  =  ro (cos θo,  sin θo)  
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Example 4.06.3   (A more challenging and tedious case, for reference only) 
 
Find and determine the nature of all critical points of the system 

  1 , sinxdx dye y y
dt dt

−= − − = − x  (1) 

 
 

0 1 andxdx dy y e y
dt dt

−= = ⇒ = − = sin x  

Critical points occur where the graphs of 1 and sinxy e y x−= − =  intersect. 

 
The critical points are (0, 0) and (xi, yi), where  
 
 ( ) ( ) ( )2 24 1 , 4 1 ; 1,2,3,i i ix i i iπ πδ ε= − − − + = …   
 
Linearize for the critical point at (0, 0): 
 

( )
( )

( ) ( )
( ) ( )

near 0,0
0,0 0,0

01 1x P Pe y x y e x
x y

− −∂ ∂
− − ≈ + = − + −

∂ ∂
y  

( ) ( )
( ) ( )

( ) (
near 0,0

0,0 0,0

sin cos 0 1Q Q )y x x y x
x y

∂ ∂
− ≈ + = − +

∂ ∂
y  

Therefore the linear system that models the non-linear system (1) near (0, 0) is  

 
1 1
1 1

x x
y y

− −⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠

 (2) 

Finding the eigenvalues:  

( ) ( )( ) ( )( ) 21 1
det 1 1 1 1 1 1

1 1
A I

λ
λ λ λ

λ
− − −

− = = − + − − − − = − −
− −

λ  

( ) 2det 0 2 2A Iλ λ λ− = ⇒ = ⇒ = ±  
 
 
The eigenvalues are real and of opposite sign. 
The critical point (0, 0) of (2) [and therefore also of (1)] is an unstable saddle point. 
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Example 4.06.3   (continued) 
 
Using the results on page 4.30, 

( ) ( ) ( )( )2 24 1 1 4 1 1 4 4D a d bc= − + = − − + − − = + = 8  
The eigenvectors are 

1

1

α
β
⎛ ⎞

=⎜ ⎟
⎝ ⎠

any non-zero multiple of 
( ) 2 2 2

for 222
1

a d D

c
λ

⎛ ⎞ ⎛ ⎞− − − −
⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ −⎝ ⎠⎝ ⎠

−     

and 

2

2

α
β
⎛ ⎞

=⎜ ⎟
⎝ ⎠

any non-zero multiple of 
( ) 2 2 2

for 222
1

a d D

c
λ

⎛ ⎞ ⎛ ⎞− + − +
⎜ ⎟
⎜ ⎟  ⎜ ⎟= = +⎜ ⎟⎜ ⎟⎜ ⎟ −⎝ ⎠⎝ ⎠

Choose a multiple of –1 in both cases. 
 
The general solution of (2) is therefore 

( ) ( )( ) ( ) ( )( )1 2 1
2 2 2, 1 2 1 2 ,t t tx t y t c e c e c e c e− −= + + − + 2

2t  

( )
( )

1 1 2lim 2 1 0
1 21 2t

y t
x t→−∞

−
= = = −

−+
>    and 

( )
( )

1 1 2lim 1 2 0
1 21 2t

y t
x t→+∞

+
= = = − −

−−
<  

The trajectories (except for c1 = 0) therefore come in from infinity along the asymptote  

( )2 1y x= − . 

 
The trajectories (except for c2 = 0) 
return to infinity along the asymptote 

( )1 2y x= − + . 

The phase space diagram for this 
solution (completely valid only for 
the linear system (2)) is  
 
 
The phase space for the non-linear 
system (1) resembles this diagram 
only in the immediate neighbour-
hood of the critical point (0, 0). 
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Example 4.06.3   (continued) 
 
At other critical points  (k, l),  

0 sin sinkdx dy l k e k
dt dt

−= = ⇒ = ⇒ − − =1 0  

 
Linearizing (Taylor’s series for P(x, y) about (x, y) = (k, l):  

( )
( )

( )
( )

( )
( ) ( )( ) ( )(

near ,
, ,

1 1
k l

k l k l

x kP Pe y x k y l e x k y
x y

− −∂ ∂
− − ≈ − + − = − − + − −

∂ ∂
)l  

( ) ( )
( )

( )
( )

( ) ( ) ( ) ( )( )
near ,

, ,

sin cos 1
k l

k l k l

Q Qy x x k y l k x k
x y

∂ ∂
− ≈ − + − = − − +

∂ ∂
y l−  

Therefore the linear system that models the non-linear system (1) near (k, l) is  

 1
cos 1

kx x ke
y y lk

−⎛ ⎞ −⎛ ⎞ ⎛ ⎞− −= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ −−⎝ ⎠ ⎝ ⎠⎝ ⎠
 (3) 

Finding the eigenvalues:  

( ) ( )( ) ( )(1det 1 cos 1
cos 1

k
keA I e k

k
λλ λ λ

λ

−
−− − −− = = − + − − − −

− −
)

0

)

 

( ) ( )2 1 cosk ke e kλ λ− −= − − − + =  

( ) ( ) (2
1 1 4 c

2

k k ke e e
λ

− − −− ± − + +
⇒ =

os k
 

( ) ( )2
1 1 4

2

k ke e
λ

− −− ± + +
⇒ =

cos k

1

 

Now  0 0 1 0 1k kk e e− −> ⇒ < < ⇒ < − <
Recall that ( ) ( ) ( )2 24 1 , 4 1 ; 1,2,3,i i ik x i i iπ πδ ε= = − − − + = …  
Examining the right-hand critical point in each pair, 

( ) ( )24 1 , 0 1i ik i π ε ε= − + <  

( )( ) ( ) ( )2 2 2cos cos 4 1 cos cos sin 0i i i i ik i π π πε ε ε ε ε⇒ = − + = − = − = ≈ >  

Therefore ( ) ( ) ( )2
1 4 cos 1k k ke e k e− − −− + + > − > 0  

and the two eigenvalues are real and of opposite sign. 
These critical points are therefore all unstable saddle points. 
 



ENGI 9420 4.06  -  Linear Approximation (2) Page 4.48 
 

 

Example 4.06.3   (continued) 
 
Examining the left-hand critical point in each pair, 

( ) ( )24 1 , 0 1i ik i π δ δ= − − <  

( )( ) ( ) ( )2 2 2cos cos 4 1 cos cos sini i ik i π π π
iδ δ δ⇒ = − − = − − = + = − δ  

But  k  is the solution to  sin 1 0ke k− − − =

( )( )21 sin 1 sin 4 1 i
ke k i π δ−⇒ = + = + − −  

( ) ( )2 21 sin 1 sin 1 cosi i
π π

iδ δ δ= + − − = − + = −  

( )
2

cos 1 cos sin 1 1 0
2
i

i i i
ke k δδ δ δ− ⎛ ⎞

⇒ + ≈ − − ≈ − − − <⎜ ⎟
⎝ ⎠

   (δi is small) 

( ) ( )2
1 4 cos 1k ke e k− −⇒ − + + < − ke−

)
 

But 
( ) ( ) (2
1 1 4 c

2

k k ke e e
λ

− − −− ± − + +
=

os k
 

Therefore the eigenvalues are a real distinct positive pair and  
the singularity is an unstable node. 
 
The locations and nature of the first five critical points are listed here. 
 

x y λ1 λ2 Type 
     
0 0 –1.4142... +1.4142... unstable saddle point 

4.56820... –0.98962... +0.1608... +0.8287... unstable node 
4.83833... –0.99208... –0.1200... +1.1121... unstable saddle point 
10.98977... –0.99998... +0.0058... +0.9941... unstable node 
11.00135... –0.99998... –0.0057... +1.0057... unstable saddle point 

 
Here is a Maple session to create direction field plots for the first three critical points of 
the non-linear system. 
 
> with(DEtools): 
> DEplot([diff(x(t),t) = -y(t) - 1 + exp(-x(t)),  
  diff(y(t),t) = y(t) - sin(x(t))], 
  [x(t),y(t)], t=-1..1, x=-0.5..0.5, y=-0.5..0.5,  
  title=`Example 4.06.3 Exact Solution`); 
 
> DEplot([diff(x(t),t) = -y(t) - 1 + exp(-x(t)),  
  diff(y(t),t) = y(t) - sin(x(t))],  
  [x(t),y(t)], t=-1..1, x=4.5..5, y=-1.1..-0.9,  
  title=`Example 4.06.3 Exact Solution`); 
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Example 4.06.3   (continued) 
 

Saddle Point at (0, 0) 

 
 
 

Unstable Node near (4.57, –0.99), Saddle Point near (4.84, –0.99) 

 
 
Solution curves can be traced by following the arrows (which at every location point in 

the direction of dy
dx

). 
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