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4.11 Duffing’s Equation    
 
Among the simplest models of damped non-linear forced oscillations of a mechanical or 
electrical system with a cubic stiffness term is Duffing’s equation:  

 
2

3
2 cosd x dxa b x c x d

dt dt
tω+ + + =  (1) 

In section 4.01, we considered the simple undamped pendulum: 

 
2

2 sin 0d x g x
dt L

+ =  (2) 

When x is very small,  sin x ≈ x  and (2) reduces to the ODE for simple harmonic motion. 

The next order approximation is 
3

sin
6
xx x≈ − , so that (2) becomes 

 
2 3

2 0
6

d x g g xx
dt L L

+ − =  (3) 

If we add a damping term dxa
dt

 and a forcing function d cos ωt , then (3) becomes 

Duffing’s equation (1). 
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Special Case 1:    
 
Conduct a stability analysis for the undamped unforced Duffing’s equation  

 
2

2 3
2 0d x x c x

dt
ω+ + =  (4) 

 
The equivalent first order system is  

 
2 3

dx y
dt
dy x c x
dt

ω

=

= − −
 (5) 

 
Critical points:  

( )
2

20 and 0 ory x x
c
ω⎛ ⎞

= = =⎜ ⎟
⎝ ⎠

−  

Near (0, 0) the linear approximation is  

 2

0 1
0

x x
y yω

⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠

 (6) 

The characteristic equation is  det(A - λI)  =  0    ⇒    λ 2  +  ω 2  =  0 
The eigenvalues are a pure imaginary pair 
⇒    (0, 0) is a centre.   It is stable but not asymptotically stable. 
If  c > 0, then this is the only critical point of (4). 
 
 

If  c < 0, then there are two other critical points, at 
2

, 0
c

ω⎛ ⎞
±⎜ ⎟⎜ ⎟−⎝ ⎠

. 
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Special Case 1:   (continued) 
 

Near 
2

, 0
c

ω⎛ ⎞
±⎜ ⎟⎜ ⎟−⎝ ⎠

 

( )
( ) ( )

( ) ( )

2

near / ,
near / , / , / ,

0
0 0 0

c
c c c

dx P Py x y
dt x c yω

ω ω ω

ω
± −

± − ± − ± −

⎛ ⎞∂ ∂
= ≈ +⎜ ⎟⎜ ⎟∂ − ∂⎝ ⎠

∓  

( ) ( )
2

0 1x y y
c

ω⎛ ⎞
= +⎜ ⎟⎜ ⎟−⎝ ⎠

∓ =  

( )
( ) ( ) ( ) ( )

( )

2
2 3

near / ,
near / , / , / ,

2 2 2
2 2

00 0 0

3 0 2

c
c c c

dy Q Qx cx x y
dt x c y

c x y x
c c c

ω
ω ω ω

ωω

ω ω ωω ω

± −
± − ± − ± −

⎛ ⎞∂ ∂
= − − ≈ +⎜ ⎟⎜ ⎟∂ − ∂⎝ ⎠

⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞
= − − + =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − −⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠

∓

∓ ∓

 

 

The linear approximation to (5) near 
2

, 0
c

ω⎛ ⎞
±⎜ ⎟⎜ ⎟−⎝ ⎠

 is 

 

2

2

0 1
2 0

x x
cy

y

ω

ω

⎛ ⎞
⎛ ⎞ ⎛ ⎞⎜ ⎟= −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟

⎝ ⎠

∓  (7) 

The characteristic equation is  det(A - λI)  =  0    ⇒    λ 2  –  2ω 2  =  0 
The eigenvalues are a distinct real pair with opposite sign 

⇒    
2

, 0
c

ω⎛ ⎞
±⎜⎜ −⎝ ⎠

⎟⎟  are saddle points.   They are unstable. 
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Exact Solution of Special Case 1: 
 
The system (5), 

2 3

dx y
dt
dy x c x
dt

ω

=

= − −
   

2 3dy dy dx x c x
dx dt dt y

ω− −
⇒ = ÷ =  

( )
2 2 2

2 3

2 2 2 4

4y A x cy dy x c x dx ωω⇒ = − − ⇒ = − −
x  

Therefore the orbits in the phase space (x, y) are 
4

2 2 2

2
c xy A xω= − − ,  

where  A  is an arbitrary constant. 
 
If  c > 0, then all orbits are closed, about the centre at (0, 0). 
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Special Case 1:   (continued) 
 
If  c < 0, then those orbits far enough away from the centre are open, due to the influence 

of the saddle points at 
2

, 0
c

ω⎛ ⎞
±⎜ ⎟⎜ ⎟−⎝ ⎠

. 

The part of the phase space between the two saddle points resembles that for the 
undamped pendulum on page 4.07: 

 
The orbits passing through the saddle points separates closed orbits from open orbits and 
is called the separatrix.    
 
The positive y axis intercept of each orbit is just the value of A  for that orbit. 
The separatrix has x axis intercepts at the saddle points.   Therefore, for the separatrix,  

4 2
2 2 2

2
/2 2x c

cx cA x
c cω

4 4

2c
ω ω ωω ω

= ± −

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + = + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

The equation of the separatrix is  

 ( )
44

2 2 2 , 0
2 2

c x
y x

c
ω ω= − + <c  
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Special Case 2: 
 
Conduct a stability analysis for the damped unforced Duffing’s equation  

 
2

2 3
2 0d x dxa x c x

dt dt
ω+ + + =  (8) 

 
 
The equivalent first order system is  

 
2 3

dx y
dt
dy x c x a y
dt

ω

=

= − − −
 (9) 

 
The critical points are the same as in special case 1:  

( )
2

20 and 0 ory x x
c
ω⎛ ⎞

= = =⎜ ⎟
⎝ ⎠

−  

Near (0, 0) the linear approximation is  

 2

0 1x x
y a yω

⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎝ ⎠

 (10) 

The characteristic equation is  det(A - λI)  =  0    ⇒    λ 2  +  aλ  + ω 2  =  0 
2 24

2
a a ωλ − ± −

⇒ =  

The critical point is stable if  a > 0  and unstable if  a < 0. 
It is a focus if  a2 – 4ω 2  < 0  and a node otherwise. 
 
If  c > 0, then this is the only critical point of (8). 
 
 

If  c < 0, then there are two other critical points, at 
2

, 0
c

ω⎛ ⎞
±⎜ ⎟⎜ ⎟−⎝ ⎠

. 
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Special Case 2:   (continued) 
 

Near 
2

, 0
c

ω⎛ ⎞
±⎜ ⎟⎜ ⎟−⎝ ⎠

 

( )
( ) ( )

( ) ( )
near / ,

near / , / , / ,
0

0 0 0
c

c c c

dx P Py x y
dt x ycω

ω ω ω

ω
± −

± − ± − ± −

∂ ∂⎛ ⎞= ≈ +⎜ ⎟∂ ∂−⎝ ⎠
∓  

( ) ( )0 1x y y
c

ω⎛ ⎞= +⎜ ⎟−⎝ ⎠
∓ =

( )
( ) ( ) ( ) ( )

( )

2 3

near / ,
near / , / , / ,

2
2 2

00 0 0

3 2

c
c c c

dy Q Qx cx a y x y
dt x yc

c x a y x a y
c c c

ω
ω ω ω

ωω

ω ω ωω ω

± −
± − ± − ± −

∂ ∂⎛ ⎞= − − − ≈ +⎜ ⎟∂ ∂−⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − − + − = −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

∓

∓ ∓

 
 

The linear approximation to (9) near 
2

, 0
c

ω⎛ ⎞
±⎜ ⎟⎜ ⎟−⎝ ⎠

 is 

 2

0 1
2

xx
c

y a
y

ω

ω

⎛ ⎞
⎛ ⎞ ⎛ ⎞⎜ ⎟= −⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠⎜ ⎟

⎝ ⎠

∓
 (11) 

The characteristic equation is  det(A - λI)  =  0    ⇒    λ 2  +  aλ   –  2ω 2  =  0 
2 28

2
a a ωλ − ± +

⇒ =  

The eigenvalues are a distinct real pair with opposite sign 

⇒    
2

, 0
c

ω⎛ ⎞
±⎜⎜ −⎝ ⎠

⎟⎟  are saddle points.   They are unstable. 

 
 
 
 
 
 
 
The presence of the damping term changes the centre into a stable focus (for physically 
reasonable values of  a, ω and c, or, for particularly strong damping, a stable node).   The 
form of the separatrix is more complicated, as trajectories leaving either saddle point in 
the direction of the origin are swept by the damping term into the focus (or node) instead 
of moving around the centre to the other saddle point.   There are no closed orbits; just 
orbits that terminate at the origin or a saddle point and orbits that retreat to infinity.    
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Special Case 2:   (continued) 
 
An enhanced sample phase portrait plot from Maple is shown here: 
 

 
and, zooming in,  
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4.12 More Examples    
 
Example 4.12.1   
 
Examine the stability of the linear second order differential equation  

( )
2

2
2 2 4 1d x dx x

dt dt
π 0+ + + =  

and find the complete solution for the initial conditions  
( ) ( ) ( )0 0 , 0 0 2x y x π= = = . 

 
 
The system can be rewritten as the first order system  

( )2

0 1

4 1 2
x x
y yπ

⎛ ⎞⎛ ⎞ ⎛ ⎞
= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟− + −⎝ ⎠ ⎝ ⎠⎝ ⎠

 

 
The only critical point is at the origin. 
 

( ) ( ) ( ) ( )( )2 2 2 24 0 2 4 1 4 1 16D a d bc π π= − + = + + − + = −  

D < 0   and   (a + d) < 0    ⇒   the critical point is an asymptotically stable focus. 
 

( ) 22 16 1 2
2 2

a d D
jπλ π

+ ± − ± −
= = = − ±  

 
Using the formula on page 4.30,   u = –1, ( )22 , 1 2 1, 4 1v u d cπ π= − = − + = = − + . 
The general solution is 
( ) ( ) ( )( )
( ) ( )( )

3 4

2
3 4

cos 2 2 sin 2 2 cos 2 sin 2

4 1 cos 2 sin 2

t

t

x t e c t t c t t

y t e c t c t

π π π π π π

π π π

−

−

= − + +

= − + +
 

[and one can check that dx y
dt

=  is indeed true.] 

( ) ( )( ) ( ) ( )3 4 3 2

20 , 0 0, 2 2 , 0,
4 1

x y c c c ππ π
π

⎛ ⎞= ⇒ + − = ⎜ ⎟+⎝ ⎠
 

( )3 4 2 2

2 1, ,
4 1 4 1

c c π
π π
−⎛ ⎞⇒ = ⎜ ⎟+ +⎝ ⎠
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Example 4.12.1  (continued) 
 
The complete solution is  

( ) ( )( )

( ) ( ) ( )( )( )
2

2

,
4 1

2 2 sin 2 cos 2 2 cos 2 sin 2 , 4 1 2 cos 2 sin 2

tex t y t

t t t t t
π

π π π π π π π π π π π

−
= ×

+

− + + + − t
 

⇒ 
( ) ( )( ) ( )( ), sin 2 , 2 cos 2 sin 2tx t y t e t t tπ π π π−= −  

 
As  t → ∞, both functions  x(t)  and  y(t)  tend to zero. 
 
 
 
The resulting phase space diagram is  
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Example 4.12.2   
 
Examine the stability of the linear second order differential equation  

( ) ( )
2

2 2
2 2 4 1 3 1 cos 2 sind x dx x t t

dt dt
π π π π+ + + = + − π  

 
 
The complete solution for the initial conditions  
( ) ( ) ( )0 1, 0 0 2x y x π= = = . 

can be obtained by building upon the solution to Example 4.12.1 and is  
 

( ) ( )( ) ( )( ), cos sin 2 , sin 2 cos 2 sin 2t tx t y t t e t t e tπ π π π π π tπ− −= + − + −  
 
In this case, the steady state solution (after the transient terms have vanished) is 

( ) ( )( ) ( )lim , cos , sin
t

x t y t t tπ π π
→∞

= −  

so that the orbit in the phase space approaches the ellipse  
2 2 2 2x yπ π+ =  

 
This ellipse must therefore be the limit cycle for 
the system. 
 
A plot of the orbit in the phase space is shown 
here. 
 
Note how the solution curve in the phase space 
can wander inside and outside the limit cycle 
more than once, before finally settling down to its 
asymptotic approach as the transient terms 
become negligible. 
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Example 4.12.2  (continued) 
 
 
Different sets of initial conditions can generate orbits that look very different at first, 
before they settle down into their steady-state configuration near the limit cycle. 

 
 
 
 

 



ENGI 9420 4.13  -  Liénard’s Theorem Page 4.77 

 

4.13 Liénard’s Theorem    
 
If   f (x)  is an even function for all x  
and g(x)  is an odd function for all x  
and g(x) > 0 for all x > 0  

and ( ) ( )
0

x
F x f t dt= ∫  is such that  F (x) = 0  has exactly one positive root, γ, and 

  F (x) < 0  for  0 < x < γ   and   F (x) > 0  and non-decreasing for  x > γ,  
then    
 
the system  

( ) ( ),x y y f x y g x= = − −  
or, equivalently,  

( ) ( )
2

2 0d x dxf x g x
dt dt

+ + =  

has a unique limit cycle enclosing the origin and that limit cycle is asymptotically stable. 
 
When all of the conditions of Liénard’s theorem are satisfied, the system has exactly one 
periodic solution, towards which all other trajectories spiral as t → ∞. 
 
 
Example 4.13.1    
 
Let  f (x)  =  –μ (1 – x2)  and  g(x) = x ,  (with μ > 0),  
then Liénard’s ODE becomes  

( )
2

2
2 1 0d x dxx x

dt dt
μ− − + =  

which is Van der Pol’s equation (section 4.08). 
 
Checking the conditions of Liénard’s theorem: 
 f (x)  =  –μ (1 – x2)  is an even function. 
 g(x) = x is an odd function, positive for all x > 0. 

( ) ( )
3 3

2

00
1 1

3 3

2

3

xx t xF x t dt t x xμ μ μ μ
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛

= − − = − − = + − = −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠ ⎝⎣ ⎦∫ x ⎞

⎟
⎠

 

F (x) = 0  has only one positive root, 3γ = . 
F (x) < 0 for 0 x< < 3   and  F (x) > 0 and increasing for 3x > . 
 
Therefore Van der Pol’s equation possesses a unique and asymptotically stable limit 
cycle. 
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5. The Gradient Operator    
 

A brief review is provided here for the gradient operator   in both Cartesian and 

orthogonal non-Cartesian coordinate systems. 

 

Sections in this Chapter: 

5.01 Gradient, Divergence, Curl and Laplacian (Cartesian)     

5.02 Differentiation in Orthogonal Curvilinear Coordinate Systems 

5.03 Summary Table for the Gradient Operator    

5.04 Derivatives of Basis Vectors 

 

 

 

 

 

5.01 Gradient, Divergence, Curl and Laplacian (Cartesian)     
 

Let z  be a function of two independent variables (x, y), so that  z = f (x, y). 

The function  z = f (x, y) defines a surface in 
3
. 

At any point (x, y) in the x-y plane, the direction in which one must travel in order to 

experience the greatest possible rate of increase in z at that point is the direction of the 

gradient vector,  

ˆ ˆf f
f

x y

 
 

 
i j  

The magnitude of the gradient vector is that greatest possible rate of increase in z at that 

point.   The gradient vector is not constant everywhere, unless the surface is a plane.   

(The symbol   is usually pronounced “del”). 

 

The concept of the gradient vector can be extended to functions of any number of 

variables.   If  u = f (x, y, z, t), then  

T

f f f f
f

x y z t

    
  

    
 . 

 

If  v  is a function of position r and time t, while position is in turn a 

function of time, then by the chain rule of differentiation,  

 

d dx dy dz d

dt x dt y dt z dt t dt t

     
      

     

v v v v v r v
v  

 
d

dt t


  



v v
v v  

 

which is of use in the study of fluid dynamics. 
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The gradient operator can also be applied to vectors via the scalar (dot) and vector (cross) 

products:  

 

The divergence of a vector field  F(x, y, z)  is  

 

 
T

T 31 2
1 2 3div

FF F
F F F

x y z x y z

     
     

      
F F  

 

A region free of sources and sinks will have zero divergence:  

the total flux into any region is balanced by the total flux out from that region. 

 

The curl of a vector field  F(x, y, z)  is 

 

3 2
1

31
2

2 1
3

ˆ

ˆcurl

ˆ

F F
F

y zx

FF
F

y z x

F F
F

z x y

  
 

 
 
 

    
   

   
 

   

i

F F j

k

  

 

 

In an irrotational field, curl F 0 .    

Whenever F   for some twice differentiable potential function  , curl F 0  

or 

      curl grad     0   

Proof: 

 
T

T

1 2 3F F F
x y z

  


   
    

   
F   

 
2 2

2 2

2 2

ˆ 0

ˆcurl 0

ˆ 0

y z z yx x

y y z x x z

z z x y y x

 

  


  

     
           

      
       

        
      
   

         

i

j

k
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Among many identities involving the gradient operator is  

 

 div curl 0  F F   

 

for all twice-differentiable vector functions F   

 

Proof: 

 

3 32 1 2 1

2

3

div curl
F FF F F F

x y z y z x z x y

F

x y

           
          

             




 

F

2

2F

x z




 

2

1F

y z




 

2

3F

y x




 

2

2F

z x




 

2

1F

z y




 
0

 

 

 

The divergence of the gradient of a scalar function is the Laplacian:  

 

 
2 2 2

2 2 2

2div grad
f f f

f f f
x y z

  
     

  
   

 

for all twice-differentiable scalar functions f. 

 

 

In orthogonal non-Cartesian coordinate systems, the expressions for the gradient operator 

are not as simple. 
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5.02 Differentiation in Orthogonal Curvilinear Coordinate Systems 

 

For any orthogonal curvilinear coordinate system  (u1, u2, u3)  in 
3
,  

the unit tangent vectors along the curvilinear axes are 
1ˆˆ

i i

i ih u


 



r
e T ,  

where the scale factors   i

i

h
u






r
.  

 

The displacement vector r


 can then be written as 
1 1 2 2 3 3
ˆ ˆ ˆu u u  r e e e ,  

where the unit vectors iê  form an orthonormal basis for  
3
. 

 

 

0
ˆ ˆ

1
i j i j

i j

i j



   


e e  

The differential displacement vector  dr  is  (by the Chain Rule)  

1 2 3 1 1 1 2 2 2 3 3 3

1 2 3

ˆ ˆ ˆdu du du h du h du h du
u u u

  
     
  

r r r
dr e e e  

and the differential arc length  ds  is given by  

      
2 2 22

1 1 2 2 3 3ds h du h du h du   dr dr  

 

The element of volume  dV  is    

    
 

 
1 2 3 1 2 3 1 2 3

1 2 3

Jacobian

, ,

, ,

x y z
dV h h h du du du du du du

u u u


 


 

          321

333

222

111

dududu

u

z

u

y

u

x

u

z

u

y

u

x

u

z

u

y

u

x





































  

 

Example 5.02.1:  Find the scale factor hθ for the spherical polar coordinate system 

   , , sin cos , sin sin , cosx y z r r r     : 

 
T

T
cos cos cos sin sin

x y z
r r r    

   

    
   

    

r
 

2 2 2 2 2 2 2 2cos cos cos sin sinh r r r     



    



r
 

 2 2 2 2cos cos sinr      2 2 2 2 2sin cos sinr r r       
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5.03 Summary Table for the Gradient Operator    
 

Gradient operator  31 2

1 1 2 2 3 3

ˆˆ ˆ

h u h u h u

  
  

  

ee e
   

 

Gradient   31 2

1 1 2 2 3 3

ˆˆ ˆV V V
V

h u h u h u

  
  

  

ee e
   

 

Divergence  
     2 3 1 3 1 2 1 2 3

1 2 3 1 2 3

1 h  h F h  h F h  h F

h  h  h  u u u

   
    

   
F  

 

Curl   

1 1 1 1

1

2 2 2 2

1 2 3 2

3 3 3 3

3

ˆ

1
ˆ

ˆ

h h  F
u

h h  F
h  h  h  u

h h  F
u






 







e

F e

e

  

 

Laplacian 
2
V   =  








































































33

21

322

13

211

32

1321

1

u

V

h

 hh

uu

V

h

 hh

uu

V

h

 hh

u  h hh
 

 

 

Scale factors: 

 

Cartesian:  hx  =  hy  =  hz  =  1 . 

 

Cylindrical polar: h  =  hz  =  1 ,   h  =   . 

 

Spherical polar: hr  =  1 ,    h  =  r ,    h  =  r sin  . 

 

 

 

Example 5.03.1:  The Laplacian of V in spherical polars is  

 

2 2

2

1 1
sin sin

sin sin

V V V
V r

r r r
 

     

          
         

           
 

2 2 2
2

2 2 2 2 2 2

2 1 1
or cot

sin

V V V V V
V

r r r r r
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Example 5.03.2   

 

A potential function   V r   is spherically symmetric, (that is, its value depends only on 

the distance  r  from the origin), due solely to a point source at the origin.   There are no 

other sources or sinks anywhere in 3 .   Deduce the functional form of   V r . 

 

 

 V r   is spherically symmetric       , ,V r f r    

In any regions not containing any sources of the vector field, the divergence of the vector 

field VF   (and therefore the Laplacian of the associated potential function V) must 

be zero.   Therefore, for all r  0,   2div 0V V   F    

But 

2 2

2

1 1
sin sin

sin sin

V V V
V r

r r r
 

     

          
         

           
 

2

2

1

sin
V

r 
   2 sin

d
r

dr
 0 0 0

dV

dr

  
    

  
 

2 2 20
d dV dV dV

r r B B r
dr dr dr dr

 
      

 
 

1

1

B r
V A



  


, where  A, B  are arbitrary constants of integration. 

Therefore the potential function must be of the form 

 

 , ,
B

V r A
r

     

 

This is the standard form of the potential function associated with a force that obeys the 

inverse square law 
2

1
F

r
 . 
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5.04 Derivatives of Basis Vectors 
 

Cartesian: ˆ ˆ ˆd d d

dt dt dt
  i j k 0    

ˆ ˆ ˆ

ˆ ˆ ˆ

x y z

x y z

  

   

r i j k

v i j k
 

 

Cylindrical Polar Coordinates: 

 

cos , sin ,x y z z       

  

 ˆˆ
d d

dt dt


       ˆˆ z r k   

 ˆ ˆ
d d

dt dt


       ˆ ˆˆ z    v k   

 ˆd

dt
k 0          [radial and transverse components of v ] 

 

Spherical Polar Coordinates. 

 

The “declination” angle θ  is the angle 

between the positive z axis and the 

radius vector r .    0 < θ < π. 

 

The “azimuth” angle   is the angle on 

the x-y plane, measured anticlockwise 

from the positive x axis, of the shadow 

of the radius vector.   0 <  < 2π.  

 

 z  =  r cos θ . 

 

The shadow of the radius vector on the 

x-y plane has length  r sin θ.  

 

It then follows that  

 

 x  =  r sin θ cos      and     y  =  r sin θ sin  . 

 

ˆ ˆˆ sin
d d d

dt dt dt

 
 r              ˆrr r  

 ˆ ˆˆ cos
d d d

dt dt dt

 
  r                  ˆ ˆˆ sinr r r     v r    

  ˆ ˆˆsin cos
d d

dt dt


   r   
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 END OF CHAPTER 5 

Example 5.04.1 

 

Find the velocity and acceleration in cylindrical polar coordinates for a particle travelling 

along the helix   x = 3 cos 2t ,   y = 3 sin 2t , z = t . 

 

 

Cylindrical polar coordinates:   cos , sin ,x y z z       

 2 2 2 , tan
y

x y
x

      

 
2 2 29cos 2 9sin 2 9 3 0t t          

 

3sin 2
tan tan 2 2 2

3cos2

t
t t

t
         

 

     1z t z    

ˆˆ3 z  r k  

 

ˆ ˆ ˆˆ ˆ ˆˆ ˆ0 3 2 1 6
d

z
dt

           
r

v k k k      

 

[The velocity has no radial component – the helix remains the same distance from the 

z axis at all times.] 

 

ˆ ˆ ˆ ˆ6 6 12
d

dt
       

v
a k 0    

 

[The acceleration vector points directly at the z axis at all times.] 

 

  

 

 

 

 

 

 

 

 

 

 

Other examples are in the problem sets. 
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