## 5. The Gradient Operator

A brief review is provided here for the gradient operator  $\overline{\nabla}$  in both Cartesian and orthogonal non-Cartesian coordinate systems.

Sections in this Chapter:

- 5.01 Gradient, Divergence, Curl and Laplacian (Cartesian)
- 5.02 Differentiation in Orthogonal Curvilinear Coordinate Systems
- 5.03 Summary Table for the Gradient Operator
- 5.04 Derivatives of Basis Vectors

### 5.01 Gradient, Divergence, Curl and Laplacian (Cartesian)

Let z be a function of two independent variables (x, y), so that z = f(x, y).

The function z = f(x, y) defines a surface in  $\mathbb{R}^3$ .

At any point (x, y) in the x-y plane, the direction in which one must travel in order to experience the greatest possible rate of increase in z at that point is the direction of the **gradient vector**,

$$\overline{\nabla}f = \frac{\partial f}{\partial x}\hat{\mathbf{i}} + \frac{\partial f}{\partial y}\hat{\mathbf{j}}$$

The magnitude of the gradient vector is that greatest possible rate of increase in z at that point. The gradient vector is not constant everywhere, unless the surface is a plane. (The symbol  $\overline{\nabla}$  is usually pronounced "del").

The concept of the gradient vector can be extended to functions of any number of

variables. If u = f(x, y, z, t), then  $\vec{\nabla} f = \left[\frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \frac{\partial f}{\partial z} \frac{\partial f}{\partial t}\right]^{\mathrm{T}}$ .

If  $\mathbf{v}$  is a function of position  $\mathbf{r}$  and time *t*, while position is in turn a function of time, then by the chain rule of differentiation,

$$\frac{d\,\mathbf{\bar{v}}}{dt} = \frac{\partial\,\mathbf{\bar{v}}}{\partial\,x}\frac{dx}{dt} + \frac{\partial\,\mathbf{\bar{v}}}{\partial\,y}\frac{dy}{dt} + \frac{\partial\,\mathbf{\bar{v}}}{\partial\,z}\frac{dz}{dt} + \frac{\partial\,\mathbf{\bar{v}}}{\partial\,t} = \left(\frac{d\,\mathbf{\bar{r}}}{dt}\cdot\mathbf{\bar{\nabla}}\right)\mathbf{\bar{v}} + \frac{\partial\,\mathbf{\bar{v}}}{\partial\,t}$$
$$\Rightarrow \frac{d\,\mathbf{\bar{v}}}{dt} = \left(\mathbf{\bar{v}}\cdot\mathbf{\bar{\nabla}}\right)\mathbf{\bar{v}} + \frac{\partial\,\mathbf{\bar{v}}}{\partial\,t}$$



which is of use in the study of fluid dynamics.

The gradient operator can also be applied to vectors via the scalar (dot) and vector (cross) products:

The **divergence** of a vector field  $\mathbf{F}(x, y, z)$  is

div 
$$\vec{\mathbf{F}} = \vec{\nabla} \cdot \vec{\mathbf{F}} = \left[ \frac{\partial}{\partial x} \quad \frac{\partial}{\partial y} \quad \frac{\partial}{\partial z} \right]^{\mathrm{T}} \cdot \left[ F_1 \quad F_2 \quad F_3 \right]^{\mathrm{T}} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}$$

A region free of sources and sinks will have zero divergence:

the total flux into any region is balanced by the total flux out from that region.

The **curl** of a vector field  $\mathbf{F}(x, y, z)$  is

$$\operatorname{curl} \vec{\mathbf{F}} = \vec{\nabla} \times \vec{\mathbf{F}} = \begin{vmatrix} \hat{\mathbf{i}} & \frac{\partial}{\partial x} & F_1 \\ \hat{\mathbf{j}} & \frac{\partial}{\partial y} & F_2 \\ \hat{\mathbf{k}} & \frac{\partial}{\partial z} & F_3 \end{vmatrix} = \begin{bmatrix} \frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z} \\ \frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x} \\ \frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \end{bmatrix}$$

In an irrotational field, curl  $\vec{F} = \vec{0}$ .

Whenever  $\vec{\mathbf{F}} = \vec{\nabla}\phi$  for some twice differentiable potential function  $\phi$ , curl  $\vec{\mathbf{F}} = \vec{\mathbf{0}}$  or

$$\operatorname{curl}\left(\operatorname{grad}\phi\right) \equiv \vec{\nabla} \times \vec{\nabla}\phi \equiv \vec{\mathbf{0}}$$

Proof:

$$\vec{\mathbf{F}} = \vec{\nabla}\phi = \begin{bmatrix} F_1 & F_2 & F_3 \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} \frac{\partial\phi}{\partial x} & \frac{\partial\phi}{\partial y} & \frac{\partial\phi}{\partial z} \end{bmatrix}^{\mathrm{T}}$$

$$\Rightarrow \operatorname{curl} \bar{\nabla}\phi = \begin{vmatrix} \hat{\mathbf{i}} & \frac{\partial}{\partial x} & \frac{\partial\phi}{\partial x} \\ \hat{\mathbf{j}} & \frac{\partial}{\partial y} & \frac{\partial\phi}{\partial y} \\ \hat{\mathbf{k}} & \frac{\partial}{\partial z} & \frac{\partial\phi}{\partial z} \end{vmatrix} = \begin{bmatrix} \frac{\partial^2\phi}{\partial y\partial z} - \frac{\partial^2\phi}{\partial z\partial y} \\ \frac{\partial^2\phi}{\partial z\partial x} - \frac{\partial^2\phi}{\partial x\partial z} \\ \frac{\partial^2\phi}{\partial x\partial y} - \frac{\partial^2\phi}{\partial y\partial x} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Among many identities involving the gradient operator is

$$\operatorname{div}\left(\operatorname{curl} \vec{\mathbf{F}}\right) \equiv \vec{\nabla} \cdot \vec{\nabla} \times \vec{\mathbf{F}} \equiv 0$$

for all twice-differentiable vector functions  $\vec{F}$ 

Proof:

div curl 
$$\vec{\mathbf{F}} = \frac{\partial}{\partial x} \left( \frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z} \right) + \frac{\partial}{\partial y} \left( \frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x} \right) + \frac{\partial}{\partial z} \left( \frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right)$$
  
$$= \frac{\partial^2 F_3}{\partial x \partial y} - \frac{\partial^2 F_2}{\partial x \partial z} + \frac{\partial^2 F_1}{\partial y \partial z} - \frac{\partial^2 F_3}{\partial y \partial x} + \frac{\partial^2 F_2}{\partial z \partial x} - \frac{\partial^2 F_1}{\partial z \partial y} \equiv 0$$

The divergence of the gradient of a scalar function is the **Laplacian**:

div (grad 
$$f$$
) =  $\vec{\nabla} \cdot \vec{\nabla} f$  =  $\nabla^2 f$  =  $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$ 

for all twice-differentiable scalar functions f.

In orthogonal non-Cartesian coordinate systems, the expressions for the gradient operator are not as simple.

## 5.02 Differentiation in Orthogonal Curvilinear Coordinate Systems

For any orthogonal curvilinear coordinate system  $(u_1, u_2, u_3)$  in  $\mathbb{R}^3$ , the unit tangent vectors along the curvilinear axes are  $\hat{\mathbf{e}}_i = \hat{\mathbf{T}}_i = \frac{1}{h_i} \frac{\partial \vec{\mathbf{r}}}{\partial u_i}$ ,

where the scale factors

$$h_i = \left| \frac{\partial \vec{\mathbf{r}}}{\partial u_i} \right|$$

The displacement vector  $\vec{\mathbf{r}}$  can then be written as  $\vec{\mathbf{r}} = u_1 \hat{\mathbf{e}}_1 + u_2 \hat{\mathbf{e}}_2 + u_3 \hat{\mathbf{e}}_3$ , where the unit vectors  $\hat{\mathbf{e}}_i$  form an **orthonormal basis** for  $\mathbb{R}^3$ .

$$\hat{\mathbf{e}}_{i} \cdot \hat{\mathbf{e}}_{j} = \delta_{ij} = \begin{cases} 0 & (i \neq j) \\ 1 & (i = j) \end{cases}$$

The differential displacement vector **dr** is (by the Chain Rule)

$$\mathbf{d}\vec{\mathbf{r}} = \frac{\partial \vec{\mathbf{r}}}{\partial u_1} du_1 + \frac{\partial \vec{\mathbf{r}}}{\partial u_2} du_2 + \frac{\partial \vec{\mathbf{r}}}{\partial u_3} du_3 = h_1 du_1 \hat{\mathbf{e}}_1 + h_2 du_2 \hat{\mathbf{e}}_2 + h_3 du_3 \hat{\mathbf{e}}_3$$

and the differential arc length ds is given by

$$ds^{2} = \mathbf{d}\vec{\mathbf{r}} \cdot \mathbf{d}\vec{\mathbf{r}} = (h_{1} du_{1})^{2} + (h_{2} du_{2})^{2} + (h_{3} du_{3})^{2}$$

The element of volume dV is

$$dV = h_1 h_2 h_3 \, du_1 du_2 du_3 = \left[ \begin{array}{c} \frac{\partial(x, y, z)}{\partial(u_1, u_2, u_3)} \\ \hline \frac{\partial(u_1, u_2, u_3)}{\partial(u_1, u_2, u_3)} \\ \hline \frac{\partial(u_1, u_3, u_3)}{\partial(u_1, u_3, u_3)} \\ \hline \frac{\partial(u_1, u_3, u_3)}{\partial(u_1, u_3, u_3)} \\ \hline \frac{\partial(u_1, u_3, u_3)}{\partial(u_1, u_3, u_3)} \\ \hline \frac{\partial(u_1, u_3, u_3)}{\partial(u_1, u_3,$$

<u>Example 5.02.1</u>: Find the scale factor  $h_{\theta}$  for the spherical polar coordinate system  $(x, y, z) = (r \sin \theta \cos \phi, r \sin \theta \sin \phi, r \cos \theta)$ :

$$\frac{\partial \mathbf{\tilde{r}}}{\partial \theta} = \left[ \frac{\partial x}{\partial \theta} \frac{\partial y}{\partial \theta} \frac{\partial z}{\partial \theta} \right]^{\mathrm{T}} = \left[ r \cos \theta \cos \phi \ r \cos \theta \sin \phi \ -r \sin \theta \right]^{\mathrm{T}}$$
$$\Rightarrow h_{\theta} = \left| \frac{\partial \mathbf{\tilde{r}}}{\partial \theta} \right| = \sqrt{r^2 \cos^2 \theta \cos^2 \phi + r^2 \cos^2 \theta \sin^2 \phi + r^2 \sin^2 \theta}$$
$$= \sqrt{r^2 \cos^2 \theta \left( \cos^2 \phi + \sin^2 \phi \right) + r^2 \sin^2 \theta} = \sqrt{r^2 \left( \cos^2 \theta + \sin^2 \theta \right)} = r$$

# 5.03 Summary Table for the Gradient Operator

Gradient operator 
$$\vec{\nabla} = \frac{\hat{\mathbf{e}}_1}{h_1} \frac{\partial}{\partial u_1} + \frac{\hat{\mathbf{e}}_2}{h_2} \frac{\partial}{\partial u_2} + \frac{\hat{\mathbf{e}}_3}{h_3} \frac{\partial}{\partial u_3}$$

Gradient 
$$\overline{\nabla}V = \frac{\hat{\mathbf{e}}_1}{h_1}\frac{\partial V}{\partial u_1} + \frac{\hat{\mathbf{e}}_2}{h_2}\frac{\partial V}{\partial u_2} + \frac{\hat{\mathbf{e}}_3}{h_3}\frac{\partial V}{\partial u_3}$$

Divergence

$$\vec{\nabla} \bullet \vec{\mathbf{F}} = \frac{1}{h_1 h_2 h_3} \left( \frac{\partial (h_2 h_3 F_1)}{\partial u_1} + \frac{\partial (h_3 h_1 F_2)}{\partial u_2} + \frac{\partial (h_1 h_2 F_3)}{\partial u_3} \right)$$

Curl  

$$\vec{\nabla} \times \vec{F} = \frac{1}{h_1 h_2 h_3} \begin{vmatrix} h_1 \hat{\mathbf{e}}_1 & \frac{\partial}{\partial u_1} & h_1 F_1 \\ h_2 \hat{\mathbf{e}}_2 & \frac{\partial}{\partial u_2} & h_2 F_2 \\ h_3 \hat{\mathbf{e}}_3 & \frac{\partial}{\partial u_3} & h_3 F_3 \end{vmatrix}$$

Laplacian 
$$\nabla^2 V = \frac{1}{h_1 h_2 h_3} \left( \frac{\partial}{\partial u_1} \left( \frac{h_2 h_3}{h_1} \frac{\partial V}{\partial u_1} \right) + \frac{\partial}{\partial u_2} \left( \frac{h_3 h_1}{h_2} \frac{\partial V}{\partial u_2} \right) + \frac{\partial}{\partial u_3} \left( \frac{h_1 h_2}{h_3} \frac{\partial V}{\partial u_3} \right) \right)$$

Scale factors:

Cartesian: $h_x = h_y = h_z = 1$ .Cylindrical polar: $h_{\rho} = h_z = 1$ ,  $h_{\phi} = \rho$ .Spherical polar: $h_r = 1$ ,  $h_{\theta} = r$ ,  $h_{\phi} = r \sin \theta$ .

Example 5.03.1: The Laplacian of *V* in spherical polars is

$$\nabla^{2}V = \frac{1}{r^{2}\sin\theta} \left( \frac{\partial}{\partial r} \left( r^{2}\sin\theta\frac{\partial V}{\partial r} \right) + \frac{\partial}{\partial\theta} \left( \sin\theta\frac{\partial V}{\partial\theta} \right) + \frac{\partial}{\partial\phi} \left( \frac{1}{\sin\theta}\frac{\partial V}{\partial\phi} \right) \right)$$
  
or 
$$\nabla^{2}V = \frac{\partial^{2}V}{\partial r^{2}} + \frac{2}{r}\frac{\partial V}{\partial r} + \frac{1}{r^{2}} \left( \frac{\partial^{2}V}{\partial\theta^{2}} + \cot\theta\frac{\partial V}{\partial\theta} \right) + \frac{1}{r^{2}\sin^{2}\theta}\frac{\partial^{2}V}{\partial\phi^{2}}$$

## Example 5.03.2

A potential function  $V(\mathbf{\tilde{r}})$  is spherically symmetric, (that is, its value depends only on the distance *r* from the origin), due solely to a point source at the origin. There are no other sources or sinks anywhere in  $\mathbb{R}^3$ . Deduce the functional form of  $V(\mathbf{\tilde{r}})$ .

 $V(\mathbf{\bar{r}})$  is spherically symmetric  $\Rightarrow V(r, \theta, \phi) = f(r)$ 

In any regions not containing any sources of the vector field, the divergence of the vector field  $\vec{\mathbf{F}} = \vec{\nabla}V$  (and therefore the Laplacian of the associated potential function *V*) must be zero. Therefore, for all  $r \neq 0$ , div  $\vec{\mathbf{F}} = \vec{\nabla} \cdot \vec{\nabla}V = \nabla^2 V = 0$ But

$$\nabla^2 V = \frac{1}{r^2 \sin \theta} \left( \frac{\partial}{\partial r} \left( r^2 \sin \theta \frac{\partial V}{\partial r} \right) + \frac{\partial}{\partial \theta} \left( \sin \theta \frac{\partial V}{\partial \theta} \right) + \frac{\partial}{\partial \phi} \left( \frac{1}{\sin \theta} \frac{\partial V}{\partial \phi} \right) \right)$$
  

$$\Rightarrow \nabla^2 V = \frac{1}{r^2 \sin \theta} \left( \frac{d}{dr} \left( r^2 \sin \theta \frac{dV}{dr} \right) + 0 + 0 \right) = 0$$
  

$$\Rightarrow \frac{d}{dr} \left( r^2 \frac{dV}{dr} \right) = 0 \qquad \Rightarrow r^2 \frac{dV}{dr} = B \qquad \Rightarrow \frac{dV}{dr} = Br^{-2}$$
  

$$\Rightarrow V = \frac{Br^{-1}}{-1} + A, \text{ where } A, B \text{ are arbitrary constants of integration.}$$
  
Therefore the potential function must be of the form

$$V(r,\theta,\phi) = A - \frac{B}{r}$$

This is the standard form of the potential function associated with a force that obeys the inverse square law  $F \propto \frac{1}{r^2}$ .

### 5.04 Derivatives of Basis Vectors

Cartesian: 
$$\frac{d}{dt}\hat{\mathbf{i}} = \frac{d}{dt}\hat{\mathbf{j}} = \frac{d}{dt}\hat{\mathbf{k}} = \mathbf{0}$$
  
 $\Rightarrow \mathbf{v} = \dot{x}\mathbf{i} + y\mathbf{j} + z\mathbf{k}$   
 $\Rightarrow \mathbf{v} = \dot{x}\mathbf{i} + \dot{y}\mathbf{j} + \dot{z}\mathbf{k}$ 

Cylindrical Polar Coordinates:

$$x = \rho \cos \phi$$
,  $y = \rho \sin \phi$ ,  $z = z$ 

$$\frac{d}{dt}\hat{\boldsymbol{\rho}} = \frac{d\phi}{dt}\hat{\boldsymbol{\phi}}$$
$$\frac{d}{dt}\hat{\boldsymbol{\phi}} = -\frac{d\phi}{dt}\hat{\boldsymbol{\rho}}$$
$$\frac{d}{dt}\hat{\boldsymbol{k}} = \bar{\boldsymbol{0}}$$

#### Spherical Polar Coordinates.

The "declination" angle  $\theta$  is the angle between the positive *z* axis and the radius vector  $\vec{\mathbf{r}}$ .  $0 \le \theta \le \pi$ .

The "azimuth" angle  $\phi$  is the angle on the *x*-*y* plane, measured anticlockwise from the positive *x* axis, of the shadow of the radius vector.  $0 \le \phi < 2\pi$ .

$$z = r\cos\theta.$$

The shadow of the radius vector on the *x*-*y* plane has length  $r \sin \theta$ .

It then follows that

$$\mathbf{r} = \rho \,\hat{\boldsymbol{\rho}} + z \,\hat{\mathbf{k}}$$
$$\Rightarrow \quad \bar{\mathbf{v}} = \dot{\rho} \,\hat{\boldsymbol{\rho}} + \rho \dot{\phi} \,\hat{\boldsymbol{\phi}} + \dot{z} \,\hat{\mathbf{k}}$$

[radial and transverse components of  $\mathbf{\bar{v}}$ ]



# Example 5.04.1

Find the velocity and acceleration in cylindrical polar coordinates for a particle travelling along the helix  $x = 3 \cos 2t$ ,  $y = 3 \sin 2t$ , z = t.

Cylindrical polar coordinates: 
$$x = \rho \cos \phi$$
,  $y = \rho \sin \phi$ ,  $z = z$   
 $\Rightarrow \rho^2 = x^2 + y^2$ ,  $\tan \phi = \frac{y}{x}$   
 $\rho^2 = 9\cos^2 2t + 9\sin^2 2t = 9 \Rightarrow \rho = 3 \Rightarrow \dot{\rho} = 0$   
 $\tan \phi = \frac{3\sin 2t}{3\cos 2t} = \tan 2t \Rightarrow \phi = 2t \Rightarrow \dot{\phi} = 2$   
 $z = t \Rightarrow \dot{z} = 1$   
 $\Rightarrow \vec{\mathbf{r}} = 3\hat{\rho} + z\hat{\mathbf{k}}$   
 $\Rightarrow \vec{\mathbf{v}} = \frac{d\vec{\mathbf{r}}}{dt} = \dot{\rho}\hat{\rho} + \rho\dot{\phi}\hat{\phi} + \dot{z}\hat{\mathbf{k}} = 0\hat{\rho} + 3 \times 2\hat{\phi} + 1\hat{\mathbf{k}} = \underline{6\hat{\phi} + \hat{\mathbf{k}}}$ 

[The velocity has no radial component – the helix remains the same distance from the z axis at all times.]

$$\bar{\mathbf{a}} = \frac{d\,\bar{\mathbf{v}}}{dt} = 6\dot{\hat{\boldsymbol{\phi}}} + \dot{\hat{\mathbf{k}}} = -6\dot{\phi}\,\hat{\boldsymbol{\rho}} + \bar{\mathbf{0}} = -12\,\hat{\boldsymbol{\rho}}$$

[The acceleration vector points directly at the *z* axis at all times.]



Other examples are in the problem sets.

# 6. Calculus of Variations

The method of calculus of variations involves finding the path between two points that provides the minimum (or maximum) value of integrals of the form

$$\int_{a}^{b} F(x, y, y') dx$$

### **Sections in this Chapter:**

- 6.01 Introduction
- 6.02 Theory
- 6.03 Examples

Sections for reference; **not** examinable:

- 6.04 Integrals with more than One Dependent Variable
- 6.05 Integrals with Higher Derivatives
- 6.06 Integrals with Several Independent Variables
- 6.07 Integrals subject to a Constraint

## 6.01 Introduction

## Example 6.01.1

To find the shortest path, (the **geodesic**), between two points, we need to find an expression for the arc length along a path between the two points.

Consider a pair of nearby points.

The element of arc length  $\Delta s$  is approximately the hypotenuse of the triangle.

$$(\Delta s)^{2} \approx (\Delta x)^{2} + (\Delta y)^{2}$$
$$\Rightarrow \frac{(\Delta s)^{2}}{(\Delta x)^{2}} \approx \frac{(\Delta x)^{2}}{(\Delta x)^{2}} + \frac{(\Delta y)^{2}}{(\Delta x)^{2}}$$

(b, f(b)) Q (a, f(a)) P  $\Delta x$  (b, f(b)) Q (b, f(b)) Q (b, f(b)) Q  $\Delta y$   $\Delta y$ 

In the limit as the two points approach each other and  $\Delta x \rightarrow 0$ , we obtain

$$\left(\frac{ds}{dx}\right)^2 = 1 + \left(\frac{dy}{dx}\right)^2$$
$$\Rightarrow \left(\frac{ds}{dx}\right) = \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$$

The arc length *s* between any two points x = a and x = b along any path *C* in  $\mathbb{R}^2$  is the line integral

$$s = \int_{C} ds = \int_{C} \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx = \int_{C} \sqrt{1 + \left(f'(x)\right)^{2}} dx \text{ where } C \text{ is the path } y = f(x)$$

The geodesic will be the path *C* for which the line integral for *s* attains its minimum value. Of course, in a flat space such as  $\mathbb{R}^2$ , that geodesic is just the straight line between the two points.



## 6.02 Theory

We wish to find the curve y(x) which passes through the points  $(x_0, y_0)$  and  $(x_1, y_1)$  and which minimizes the integral

$$I = \int_{x_0}^{x_1} F(x, y(x), y'(x)) dx$$

Consider the one parameter family of curves  $y(x) = u(x) + \alpha \eta(x)$ , where  $\alpha$  is a real parameter,  $\eta(x)$  is an arbitrary function except for the requirement  $\eta(x_0) = \eta(x_1) = 0$  and u(x) represents the (as yet unknown) solution.

Every member of this family of curves passes through the points  $(x_0, y_0)$  and  $(x_1, y_1)$ . For any member of the family,

$$I(\alpha) = \int_{x_0}^{x_1} F(x, u(x) + \alpha \eta(x), u'(x) + \alpha \eta'(x)) dx$$

we know that y(x) = u(x) minimizes *I*.

Therefore the minimum for *I* occurs when  $\alpha = 0$ , so that  $\frac{dI}{d\alpha}\Big|_{\alpha = 0} = 0$ .

Carrying out a Leibnitz differentiation of the integral  $I(\alpha)$ ,

$$\frac{dI}{d\alpha} = 0 - 0 + \int_{x_0}^{x_1} \frac{\partial}{\partial \alpha} F(x, u(x) + \alpha \eta(x), u'(x) + \alpha \eta'(x)) dx$$
$$= \int_{x_0}^{x_1} \left[ 0 + \frac{\partial F}{\partial y} \frac{\partial}{\partial \alpha} (u(x) + \alpha \eta(x)) + \frac{\partial F}{\partial y'} \frac{\partial}{\partial \alpha} (u'(x) + \alpha \eta'(x)) \right] dx$$

F $x \alpha x \alpha$ 

At the minimum  $\alpha = 0$ , so that y(x) = u(x) and y'(x) = u'(x). Therefore  $\int_{-\infty}^{x_1} \int_{-\infty}^{x_2} \partial F \int_{-\infty}^{\infty} dF dx$ .

$$0 = \int_{x_0}^{x_1} \left[ \eta(x) \frac{\partial F}{\partial u} + \eta'(x) \frac{\partial F}{\partial u'} \right] dx$$

Also note, by the product rule of differentiation, that

$$\frac{d}{dx}\left(\eta(x)\frac{\partial F}{\partial u'}\right) = \eta'(x)\frac{\partial F}{\partial u'} + \eta(x)\frac{d}{dx}\left(\frac{\partial F}{\partial u}\right)$$

Therefore the integral can be written as

$$0 = \int_{x_0}^{x_1} \left[ \eta(x) \frac{\partial F}{\partial u} + \frac{d}{dx} \left( \eta(x) \frac{\partial F}{\partial u'} \right) - \eta(x) \frac{d}{dx} \left( \frac{\partial F}{\partial u'} \right) \right] dx$$
  
$$0 = \int_{x_0}^{x_1} \eta(x) \left[ \frac{\partial F}{\partial u} - \frac{d}{dx} \left( \frac{\partial F}{\partial u'} \right) \right] dx + \int_{x_0}^{x_1} \frac{d}{dx} \left( \eta(x) \frac{\partial F}{\partial u'} \right) dx$$
  
$$0 = \int_{x_0}^{x_1} \eta(x) \left[ \frac{\partial F}{\partial u} - \frac{d}{dx} \left( \frac{\partial F}{\partial u'} \right) \right] dx + \left[ \eta(x) \frac{\partial F}{\partial u'} \right]_{x_0}^{x_1}$$

But  $\eta(x_0) = \eta(x_1) = 0$ Therefore the minimizing curve u(x) satisfies

$$\int_{x_0}^{x_1} \eta(x) \left[ \frac{\partial F}{\partial u} - \frac{d}{dx} \left( \frac{\partial F}{\partial u'} \right) \right] dx = 0$$

But  $\eta(x)$  is an arbitrary function of x, which leads to

$$\frac{\partial F}{\partial u} - \frac{d}{dx} \left( \frac{\partial F}{\partial u'} \right) = 0$$

Thus, if y = f(x) is a path that minimizes the integral  $\int_{a}^{b} F(x, y, y') dx$ , then y = f(x)and F(x, y, y') must satisfy the **Euler equation for extremals** 

$$\frac{d}{dx}\left(\frac{\partial F}{\partial y'}\right) - \frac{\partial F}{\partial y} = 0$$

Euler's equation requires the assumption that F(x, y, y') has continuous second derivatives in all three of its variables and that all members of the family  $y(x) = u(x) + \alpha \eta(x)$  have continuous second derivatives.

Expansion of Euler's Equation:

$$\frac{d}{dx} \left( \frac{\partial F}{\partial y'} (x, y(x), y'(x)) \right) - \frac{\partial F}{\partial y} (x, y(x), y'(x)) = 0$$

$$\Rightarrow \frac{\partial^2 F}{\partial x \partial y'} + y'(x) \frac{\partial^2 F}{\partial y \partial y'} + y''(x) \frac{\partial^2 F}{\partial y'^2} - \frac{\partial F}{\partial y} = 0$$
or
$$y'' F_{y'y'} + y' F_{yy'} + \left( F_{xy'} - F_y \right) = 0$$

Note: Leibnitz differentiation of  $I(z) = \int_{f(z)}^{g(z)} F(x, z) dx$  with respect to z is:  $\frac{dI}{dz} = g'(z)F(g(z), z) - f'(z)F(f(z), z) + \int_{f(z)}^{g(z)} \frac{\partial}{\partial z}F(x, z) dx$ 

A special case of this is  $\frac{d}{dx}\int_{a}^{x} f(t)dt = f(x)$ .