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5. The Gradient Operator    
 

A brief review is provided here for the gradient operator   in both Cartesian and 

orthogonal non-Cartesian coordinate systems. 

 

Sections in this Chapter: 

5.01 Gradient, Divergence, Curl and Laplacian (Cartesian)     

5.02 Differentiation in Orthogonal Curvilinear Coordinate Systems 

5.03 Summary Table for the Gradient Operator    

5.04 Derivatives of Basis Vectors 

 

 

 

 

 

5.01 Gradient, Divergence, Curl and Laplacian (Cartesian)     
 

Let z  be a function of two independent variables (x, y), so that  z = f (x, y). 

The function  z = f (x, y) defines a surface in 
3
. 

At any point (x, y) in the x-y plane, the direction in which one must travel in order to 

experience the greatest possible rate of increase in z at that point is the direction of the 

gradient vector,  

ˆ ˆf f
f

x y

 
 

 
i j  

The magnitude of the gradient vector is that greatest possible rate of increase in z at that 

point.   The gradient vector is not constant everywhere, unless the surface is a plane.   

(The symbol   is usually pronounced “del”). 

 

The concept of the gradient vector can be extended to functions of any number of 

variables.   If  u = f (x, y, z, t), then  

T

f f f f
f

x y z t

    
  

    
 . 

 

If  v  is a function of position r and time t, while position is in turn a 

function of time, then by the chain rule of differentiation,  

 

d dx dy dz d

dt x dt y dt z dt t dt t

     
      

     

v v v v v r v
v  

 
d

dt t


  



v v
v v  

 

which is of use in the study of fluid dynamics. 
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The gradient operator can also be applied to vectors via the scalar (dot) and vector (cross) 

products:  

 

The divergence of a vector field  F(x, y, z)  is  

 

 
T

T 31 2
1 2 3div

FF F
F F F

x y z x y z

     
     

      
F F  

 

A region free of sources and sinks will have zero divergence:  

the total flux into any region is balanced by the total flux out from that region. 

 

The curl of a vector field  F(x, y, z)  is 

 

3 2
1

31
2

2 1
3

ˆ

ˆcurl

ˆ

F F
F

y zx

FF
F

y z x

F F
F

z x y

  
 

 
 
 

    
   

   
 

   

i

F F j

k

  

 

 

In an irrotational field, curl F 0 .    

Whenever F   for some twice differentiable potential function  , curl F 0  

or 

      curl grad     0   

Proof: 

 
T

T

1 2 3F F F
x y z

  


   
    

   
F   

 
2 2

2 2

2 2

ˆ 0

ˆcurl 0

ˆ 0

y z z yx x

y y z x x z

z z x y y x
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Among many identities involving the gradient operator is  

 

 div curl 0  F F   

 

for all twice-differentiable vector functions F   

 

Proof: 

 

3 32 1 2 1

2

3

div curl
F FF F F F

x y z y z x z x y

F

x y

           
          

             




 

F

2

2F

x z




 

2

1F

y z




 

2

3F

y x




 

2

2F

z x




 

2

1F

z y




 
0

 

 

 

The divergence of the gradient of a scalar function is the Laplacian:  

 

 
2 2 2

2 2 2

2div grad
f f f

f f f
x y z

  
     

  
   

 

for all twice-differentiable scalar functions f. 

 

 

In orthogonal non-Cartesian coordinate systems, the expressions for the gradient operator 

are not as simple. 
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5.02 Differentiation in Orthogonal Curvilinear Coordinate Systems 

 

For any orthogonal curvilinear coordinate system  (u1, u2, u3)  in 
3
,  

the unit tangent vectors along the curvilinear axes are 
1ˆˆ

i i

i ih u


 



r
e T ,  

where the scale factors   i

i

h
u






r
.  

 

The displacement vector r


 can then be written as 
1 1 2 2 3 3
ˆ ˆ ˆu u u  r e e e ,  

where the unit vectors iê  form an orthonormal basis for  
3
. 

 

 

0
ˆ ˆ

1
i j i j

i j

i j



   


e e  

The differential displacement vector  dr  is  (by the Chain Rule)  

1 2 3 1 1 1 2 2 2 3 3 3

1 2 3

ˆ ˆ ˆdu du du h du h du h du
u u u

  
     
  

r r r
dr e e e  

and the differential arc length  ds  is given by  

      
2 2 22

1 1 2 2 3 3ds h du h du h du   dr dr  

 

The element of volume  dV  is    

    
 

 
1 2 3 1 2 3 1 2 3

1 2 3

Jacobian

, ,

, ,

x y z
dV h h h du du du du du du

u u u
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Example 5.02.1:  Find the scale factor hθ for the spherical polar coordinate system 

   , , sin cos , sin sin , cosx y z r r r     : 

 
T

T
cos cos cos sin sin

x y z
r r r    

   

    
   

    

r
 

2 2 2 2 2 2 2 2cos cos cos sin sinh r r r     



    



r
 

 2 2 2 2cos cos sinr      2 2 2 2 2sin cos sinr r r       
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5.03 Summary Table for the Gradient Operator    
 

Gradient operator  31 2

1 1 2 2 3 3

ˆˆ ˆ

h u h u h u

  
  

  

ee e
   

 

Gradient   31 2

1 1 2 2 3 3

ˆˆ ˆV V V
V

h u h u h u

  
  

  

ee e
   

 

Divergence  
     2 3 1 3 1 2 1 2 3

1 2 3 1 2 3

1 h  h F h  h F h  h F

h  h  h  u u u

   
    

   
F  

 

Curl   

1 1 1 1

1

2 2 2 2

1 2 3 2

3 3 3 3

3

ˆ

1
ˆ

ˆ

h h  F
u

h h  F
h  h  h  u

h h  F
u






 







e

F e

e

  

 

Laplacian 
2
V   =  








































































33

21

322

13

211

32

1321

1
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V
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 hh
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V
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 hh
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V
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 hh

u  h hh
 

 

 

Scale factors: 

 

Cartesian:  hx  =  hy  =  hz  =  1 . 

 

Cylindrical polar: h  =  hz  =  1 ,   h  =   . 

 

Spherical polar: hr  =  1 ,    h  =  r ,    h  =  r sin  . 

 

 

 

Example 5.03.1:  The Laplacian of V in spherical polars is  

 

2 2

2

1 1
sin sin

sin sin

V V V
V r

r r r
 

     

          
         

           
 

2 2 2
2

2 2 2 2 2 2

2 1 1
or cot

sin

V V V V V
V

r r r r r
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Example 5.03.2   

 

A potential function   V r   is spherically symmetric, (that is, its value depends only on 

the distance  r  from the origin), due solely to a point source at the origin.   There are no 

other sources or sinks anywhere in 3 .   Deduce the functional form of   V r . 

 

 

 V r   is spherically symmetric       , ,V r f r    

In any regions not containing any sources of the vector field, the divergence of the vector 

field VF   (and therefore the Laplacian of the associated potential function V) must 

be zero.   Therefore, for all r  0,   2div 0V V   F    

But 

2 2

2

1 1
sin sin

sin sin

V V V
V r

r r r
 

     

          
         

           
 

2

2

1

sin
V

r 
   2 sin

d
r

dr
 0 0 0

dV

dr

  
    

  
 

2 2 20
d dV dV dV

r r B B r
dr dr dr dr

 
      

 
 

1

1

B r
V A



  


, where  A, B  are arbitrary constants of integration. 

Therefore the potential function must be of the form 

 

 , ,
B

V r A
r

     

 

This is the standard form of the potential function associated with a force that obeys the 

inverse square law 
2

1
F

r
 . 
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5.04 Derivatives of Basis Vectors 
 

Cartesian: ˆ ˆ ˆd d d

dt dt dt
  i j k 0    

ˆ ˆ ˆ

ˆ ˆ ˆ

x y z

x y z

  

   

r i j k

v i j k
 

 

Cylindrical Polar Coordinates: 

 

cos , sin ,x y z z       

  

 ˆˆ
d d

dt dt


       ˆˆ z r k   

 ˆ ˆ
d d

dt dt


       ˆ ˆˆ z    v k   

 ˆd

dt
k 0          [radial and transverse components of v ] 

 

Spherical Polar Coordinates. 

 

The “declination” angle θ  is the angle 

between the positive z axis and the 

radius vector r .    0 < θ < π. 

 

The “azimuth” angle   is the angle on 

the x-y plane, measured anticlockwise 

from the positive x axis, of the shadow 

of the radius vector.   0 <  < 2π.  

 

 z  =  r cos θ . 

 

The shadow of the radius vector on the 

x-y plane has length  r sin θ.  

 

It then follows that  

 

 x  =  r sin θ cos      and     y  =  r sin θ sin  . 

 

ˆ ˆˆ sin
d d d

dt dt dt

 
 r              ˆrr r  

 ˆ ˆˆ cos
d d d

dt dt dt

 
  r                  ˆ ˆˆ sinr r r     v r    

  ˆ ˆˆsin cos
d d

dt dt


   r   
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 END OF CHAPTER 5 

Example 5.04.1 

 

Find the velocity and acceleration in cylindrical polar coordinates for a particle travelling 

along the helix   x = 3 cos 2t ,   y = 3 sin 2t , z = t . 

 

 

Cylindrical polar coordinates:   cos , sin ,x y z z       

 2 2 2 , tan
y

x y
x

      

 
2 2 29cos 2 9sin 2 9 3 0t t          

 

3sin 2
tan tan 2 2 2

3cos2

t
t t

t
         

 

     1z t z    

ˆˆ3 z  r k  

 

ˆ ˆ ˆˆ ˆ ˆˆ ˆ0 3 2 1 6
d

z
dt

           
r

v k k k      

 

[The velocity has no radial component – the helix remains the same distance from the 

z axis at all times.] 

 

ˆ ˆ ˆ ˆ6 6 12
d

dt
       

v
a k 0    

 

[The acceleration vector points directly at the z axis at all times.] 

 

  

 

 

 

 

 

 

 

 

 

 

Other examples are in the problem sets. 
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6. Calculus of Variations 

 

 

The method of calculus of variations involves finding the path between two points that 

provides the minimum (or maximum) value of integrals of the form 

 , ,
b

a
F x y y dx  

 

 

 

 

 

Sections in this Chapter:  

6.01 Introduction    

6.02 Theory 

6.03 Examples    
 

Sections for reference; not examinable: 

6.04 Integrals with more than One Dependent Variable    

6.05 Integrals with Higher Derivatives     

6.06 Integrals with Several Independent Variables    

6.07 Integrals subject to a Constraint    
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6.01 Introduction    
 

Example 6.01.1   

 

To find the shortest path, (the geodesic), between two points, we need to find an 

expression for the arc length along a path between the two points.    

 

Consider a pair of nearby points. 

The element of arc length Δs is approximately 

the hypotenuse of the triangle. 

     
2 2 2

s x y      

   
 

 

 

 

 

 

2 2 2

2 2 2

s x y

x x x

  
  

  
 

In the limit as the two points approach each 

other and 0x  , we obtain 
2 2

1
ds dy

dx dx

   
    

   
 

2

1
ds dy

dx dx

   
     

   
 

The arc length s between any two points x = a  and  x = b  along any path C in 2  is the 

line integral 

    
2

2
1 1 where is the path

C
CC

dy
s ds dx f x dx C y f x

dx

 
      

 
   

 

 

 

The geodesic will be the path C for which the line integral for s 

attains its minimum value.   Of course, in a flat space such as 
2 , that geodesic is just the straight line between the two points. 
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6.02 Theory    
 

We wish to find the curve  y(x)  which passes through the points  0 0,x y  and  1 1,x y   

and which minimizes the integral  

    
1

0

, ,
x

x
I F x y x y x dx   

Consider the one parameter family of curves       y x u x x  , where   is a real 

parameter, η(x)  is an arbitrary function except for the requirement    0 1 0x x    

and u(x) represents the (as yet unknown) solution. 

 

Every member of this family of curves passes through the points   0 0,x y  and  1 1,x y . 

For any member of the family,  

          
1

0

, ,
x

x
I F x u x x u x x dx         

we know that  y(x) = u(x) minimizes I. 

Therefore the minimum for I occurs when  α = 0, so that 
0

0
d I

d  

 . 

Carrying out a Leibnitz differentiation of the integral  I  ,  

        
1

0

0 0 , ,
x

x

d I
F x u x x u x x dx

d
   

 


     

  

         
1

0

0

x

x

F F
u x x u x x dx

y y
   

 

    
          

 

At the minimum  α = 0, so that  y(x)  =  u(x)  and  y'(x)  =  u'(x).   Therefore  

   
1

0

0

x

x

F F
x x dx

u u
 

  
    

 

Also note, by the product rule of differentiation, that  

     
d F F d F

x x x
dx u u dx u

  
     

    
        

Therefore the integral can be written as  

     
1

0

0

x

x

F d F d F
x x x dx

u dx u dx u
  
       

             
 

   
1 1

0 0

0

x x

x x

F d F d F
x dx x dx

u dx u dx u
 

      
              

 

   
11

0 0

0

x

x

x

x

F d F F
x dx x

u dx u u
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( ) ( )0 1But 0x xη η= =
 Therefore the minimizing curve  u(x)  satisfies  

( )
1

0

0
x

x

F d Fx dx
u dx u

η ∂ ∂  − =  ′∂ ∂  ∫  

But  ( )xη   is an arbitrary function of x, which leads to  
 

0F d F
u dx u

∂ ∂ − = ′∂ ∂ 
 

 

Thus, if ( )y f x=  is a path that minimizes the integral ( ), ,
b

a
F x y y dx′∫ , then  ( )y f x=  

and  F (x, y, y')  must satisfy the Euler equation for extremals 
 

0d F F
dx y y

 ∂ ∂
− = ′∂ ∂ 

 

 
 
Euler’s equation requires the assumption that F(x, y, y') has continuous second 
derivatives in all three of its variables and that all members of the family 
( ) ( ) ( )y x u x xα η= +  have continuous second derivatives. 

 
Expansion of Euler’s Equation:  
 

( ) ( )( ) ( ) ( )( ), , , , 0d F Fx y x y x x y x y x
dx y y

 ∂ ∂′ ′− = ′∂ ∂ 
 

( ) ( )
2 2 2

2 0F F F Fy x y x
x y y y y y
∂ ∂ ∂ ∂′ ′′⇒ + + − =

′ ′ ′∂ ∂ ∂ ∂ ∂ ∂
 

or 

( ) 0yy y yy xyy F y F F F′ ′ ′ ′′′ ′+ + − =  

 
 
 

Note: Leibnitz differentiation of ( ) ( )
( )

( )
,

g z

f z
I z F x z dx= ∫  with respect to  z  is: 

( ) ( )( ) ( ) ( )( ) ( )
( )

( )
, , ,

g z

f z

d I g z F g z z f z F f z z F x z dx
d z z

∂′ ′= − +
∂∫  

A special case of this is  ( ) ( )
x

a
d f t dt f x
dx

=∫ . 
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