5. The Gradient Operator

A brief review is provided here for the gradient operator $\vec{\nabla}$ in both Cartesian and orthogonal non-Cartesian coordinate systems.

Sections in this Chapter:

5.01 Gradient, Divergence, Curl and Laplacian (Cartesian)
5.02 Differentiation in Orthogonal Curvilinear Coordinate Systems
5.03 Summary Table for the Gradient Operator
5.04 Derivatives of Basis Vectors

5.01 Gradient, Divergence, Curl and Laplacian (Cartesian)

Let z be a function of two independent variables (x, y), so that $z=f(x, y)$.
The function $z=f(x, y)$ defines a surface in \mathbb{R}^{3}.
At any point (x, y) in the $x-y$ plane, the direction in which one must travel in order to experience the greatest possible rate of increase in z at that point is the direction of the gradient vector,

$$
\stackrel{\rightharpoonup}{\nabla} f=\frac{\partial f}{\partial x} \hat{\mathbf{i}}+\frac{\partial f}{\partial y} \hat{\mathbf{j}}
$$

The magnitude of the gradient vector is that greatest possible rate of increase in z at that point. The gradient vector is not constant everywhere, unless the surface is a plane. (The symbol $\vec{\nabla}$ is usually pronounced "del").

The concept of the gradient vector can be extended to functions of any number of variables. If $u=f(x, y, z, t)$, then $\vec{\nabla} f=\left[\frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \frac{\partial f}{\partial z} \frac{\partial f}{\partial t}\right]^{\mathrm{T}}$.

If \mathbf{v} is a function of position \mathbf{r} and time t, while position is in turn a function of time, then by the chain rule of differentiation,

$$
\begin{aligned}
\frac{d \stackrel{\rightharpoonup}{\mathbf{v}}}{d t}=\frac{\partial \stackrel{\rightharpoonup}{\mathbf{v}}}{\partial x} \frac{d x}{d t}+ & \frac{\partial \stackrel{\rightharpoonup}{\mathbf{v}}}{\partial y} \frac{d y}{d t}+\frac{\partial \stackrel{\rightharpoonup}{\mathbf{v}}}{\partial z} \frac{d z}{d t}+\frac{\partial \stackrel{\rightharpoonup}{\mathbf{v}}}{\partial t}=\left(\frac{d \stackrel{\rightharpoonup}{\mathbf{r}}}{d t} \cdot \stackrel{\rightharpoonup}{\nabla}\right) \stackrel{\rightharpoonup}{\mathbf{v}}+\frac{\partial \stackrel{\rightharpoonup}{\mathbf{v}}}{\partial t} \\
& \Rightarrow \frac{d \stackrel{\rightharpoonup}{\mathbf{v}}}{d t}=(\stackrel{\rightharpoonup}{\mathbf{v}} \cdot \stackrel{\rightharpoonup}{\nabla}) \stackrel{\rightharpoonup}{\mathbf{v}}+\frac{\partial \stackrel{\rightharpoonup}{\mathbf{v}}}{\partial t}
\end{aligned}
$$

which is of use in the study of fluid dynamics.

The gradient operator can also be applied to vectors via the scalar (dot) and vector (cross) products:

The divergence of a vector field $\mathbf{F}(x, y, z)$ is

$$
\operatorname{div} \overrightarrow{\mathbf{F}}=\vec{\nabla} \cdot \stackrel{\rightharpoonup}{\mathbf{F}}=\left[\begin{array}{lll}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}
\end{array}\right]^{\mathrm{T}} \cdot\left[\begin{array}{lll}
F_{1} & F_{2} & F_{3}
\end{array}\right]^{\mathrm{T}}=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}
$$

A region free of sources and sinks will have zero divergence: the total flux into any region is balanced by the total flux out from that region.

The curl of a vector field $\mathbf{F}(x, y, z)$ is

$$
\operatorname{curl} \overrightarrow{\mathbf{F}}=\vec{\nabla} \times \overrightarrow{\mathbf{F}}=\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \frac{\partial}{\partial x} & F_{1} \\
\hat{\mathbf{j}} & \frac{\partial}{\partial y} & F_{2} \\
\hat{\mathbf{k}} & \frac{\partial}{\partial z} & F_{3}
\end{array}\right|=\left[\begin{array}{l}
\frac{\partial F_{3}}{\partial y}-\frac{\partial F_{2}}{\partial z} \\
\frac{\partial F_{1}}{\partial z}-\frac{\partial F_{3}}{\partial x} \\
\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}
\end{array}\right]
$$

In an irrotational field, curl $\overrightarrow{\mathbf{F}}=\overrightarrow{\mathbf{0}}$.
Whenever $\stackrel{\rightharpoonup}{\mathbf{F}}=\stackrel{\rightharpoonup}{\nabla} \phi$ for some twice differentiable potential function ϕ, curl $\overrightarrow{\mathbf{F}}=\overrightarrow{\mathbf{0}}$ or

$$
\operatorname{curl}(\operatorname{grad} \phi) \equiv \stackrel{\rightharpoonup}{\nabla} \times \vec{\nabla} \phi \equiv \overrightarrow{\mathbf{0}}
$$

Proof:

$$
\begin{aligned}
& \overrightarrow{\mathbf{F}}=\vec{\nabla} \phi=\left[\begin{array}{lll}
F_{1} & F_{2} & F_{3}
\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{lll}
\frac{\partial \phi}{\partial x} & \frac{\partial \phi}{\partial y} & \frac{\partial \phi}{\partial z}
\end{array}\right]^{\mathrm{T}} \\
& \Rightarrow \operatorname{curl} \vec{\nabla} \phi=\left|\begin{array}{lll}
\hat{\mathbf{i}} & \frac{\partial}{\partial x} & \frac{\partial \phi}{\partial x} \\
\hat{\mathbf{j}} & \frac{\partial}{\partial y} & \frac{\partial \phi}{\partial y} \\
\hat{\mathbf{k}} & \frac{\partial}{\partial z} & \frac{\partial \phi}{\partial z}
\end{array}\right|=\left[\begin{array}{c}
\frac{\partial^{2} \phi}{\partial y \partial z}-\frac{\partial^{2} \phi}{\partial z \partial y} \\
\frac{\partial^{2} \phi}{\partial z \partial x}-\frac{\partial^{2} \phi}{\partial x \partial z} \\
\frac{\partial^{2} \phi}{\partial x \partial y}-\frac{\partial^{2} \phi}{\partial y \partial x}
\end{array}\right] \equiv\left[\begin{array}{c}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

Among many identities involving the gradient operator is

$$
\operatorname{div}(\operatorname{curl} \stackrel{\rightharpoonup}{\mathbf{F}}) \equiv \stackrel{\rightharpoonup}{\nabla} \cdot \stackrel{\rightharpoonup}{\nabla} \times \stackrel{\rightharpoonup}{\mathbf{F}} \equiv 0
$$

for all twice-differentiable vector functions $\overrightarrow{\mathbf{F}}$
Proof:

$$
\begin{aligned}
\operatorname{div} \operatorname{curl} \overrightarrow{\mathbf{F}} & =\frac{\partial}{\partial x}\left(\frac{\partial F_{3}}{\partial y}-\frac{\partial F_{2}}{\partial z}\right)+\frac{\partial}{\partial y}\left(\frac{\partial F_{1}}{\partial z}-\frac{\partial F_{3}}{\partial x}\right)+\frac{\partial}{\partial z}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) \\
& =\frac{\partial^{2} F^{2} / 3}{\partial x \partial y}-\frac{\partial^{2} F_{2}}{\partial x \partial z}+\frac{\partial^{2} F_{1}}{\partial y \partial z}-\frac{\partial^{2} F^{2} / 3}{\partial y \partial x}+\frac{\partial^{2} F_{2}}{\partial z \partial x}-\frac{\partial^{2} F_{1} /}{\partial z \partial x} \equiv 0
\end{aligned}
$$

The divergence of the gradient of a scalar function is the Laplacian:

$$
\operatorname{div}(\operatorname{grad} f) \equiv \stackrel{\rightharpoonup}{\nabla} \cdot \stackrel{\rightharpoonup}{\nabla} f \equiv \nabla^{2} f \equiv \frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}
$$

for all twice-differentiable scalar functions f.

In orthogonal non-Cartesian coordinate systems, the expressions for the gradient operator are not as simple.

5.02 Differentiation in Orthogonal Curvilinear Coordinate Systems

For any orthogonal curvilinear coordinate system $\left(u_{1}, u_{2}, u_{3}\right)$ in \mathbb{R}^{3}, the unit tangent vectors along the curvilinear axes are $\hat{\mathbf{e}}_{i}=\hat{\mathbf{T}}_{i}=\frac{1}{h_{i}} \frac{\partial \overrightarrow{\mathbf{r}}}{\partial u_{i}}$, where the scale factors $h_{i}=\left|\frac{\partial \mathbf{r}}{\partial u_{i}}\right|$.

The displacement vector $\overrightarrow{\mathbf{r}}$ can then be written as $\overrightarrow{\mathbf{r}}=u_{1} \hat{\mathbf{e}}_{1}+u_{2} \hat{\mathbf{e}}_{2}+u_{3} \hat{\mathbf{e}}_{3}$, where the unit vectors $\hat{\mathbf{e}}_{i}$ form an orthonormal basis for \mathbb{R}^{3}.

$$
\hat{\mathbf{e}}_{i} \cdot \hat{\mathbf{e}}_{j}=\delta_{i j}= \begin{cases}0 & (i \neq j) \\ 1 & (i=j)\end{cases}
$$

The differential displacement vector $\mathbf{d r}$ is (by the Chain Rule)

$$
\mathbf{d} \overrightarrow{\mathbf{r}}=\frac{\partial \stackrel{\rightharpoonup}{\mathbf{r}}}{\partial u_{1}} d u_{1}+\frac{\partial \stackrel{\rightharpoonup}{\mathbf{r}}}{\partial u_{2}} d u_{2}+\frac{\partial \stackrel{\mathbf{r}}{2}}{\partial u_{3}} d u_{3}=h_{1} d u_{1} \hat{\mathbf{e}}_{1}+h_{2} d u_{2} \hat{\mathbf{e}}_{2}+h_{3} d u_{3} \hat{\mathbf{e}}_{3}
$$

and the differential arc length $d s$ is given by

$$
d s^{2}=\mathbf{d} \overrightarrow{\mathbf{r}} \cdot \mathbf{d} \overrightarrow{\mathbf{r}}=\left(h_{1} d u_{1}\right)^{2}+\left(h_{2} d u_{2}\right)^{2}+\left(h_{3} d u_{3}\right)^{2}
$$

The element of volume $d V$ is

$$
\begin{aligned}
d V=h_{1} h_{2} h_{3} d u_{1} d u_{2} d u_{3} & =\underbrace{\left.\frac{\partial(x, y, z)}{\partial\left(u_{1}, u_{2}, u_{3}\right)} \right\rvert\,}_{\text {Jacobian }} d u_{1} d u_{2} d u_{3} \\
& =\left|\begin{array}{ccc}
\frac{\partial x}{\partial u_{1}} & \frac{\partial y}{\partial u_{1}} & \frac{\partial z}{\partial u_{1}} \\
\frac{\partial x}{\partial u_{2}} & \frac{\partial y}{\partial u_{2}} & \frac{\partial z}{\partial u_{2}} \\
\frac{\partial x}{\partial u_{3}} & \frac{\partial y}{\partial u_{3}} & \frac{\partial z}{\partial u_{3}}
\end{array}\right| d u_{1} d u_{2} d u_{3}
\end{aligned}
$$

Example 5.02.1: Find the scale factor h_{θ} for the spherical polar coordinate system $(x, y, z)=(r \sin \theta \cos \phi, r \sin \theta \sin \phi, r \cos \theta):$

$$
\begin{aligned}
& \frac{\partial \overrightarrow{\mathbf{r}}}{\partial \theta}=\left[\frac{\partial x}{\partial \theta} \frac{\partial y}{\partial \theta} \frac{\partial z}{\partial \theta}\right]^{\mathrm{T}}=[r \cos \theta \cos \phi \quad r \cos \theta \sin \phi-r \sin \theta]^{\mathrm{T}} \\
& \Rightarrow h_{\theta}=\left|\frac{\partial \overrightarrow{\mathbf{r}}}{\partial \theta}\right|=\sqrt{r^{2} \cos ^{2} \theta \cos ^{2} \phi+r^{2} \cos ^{2} \theta \sin ^{2} \phi+r^{2} \sin ^{2} \theta} \\
& =\sqrt{r^{2} \cos ^{2} \theta\left(\cos ^{2} \phi+\sin ^{2} \phi\right)}+r^{2} \sin ^{2} \theta
\end{aligned}=\sqrt{r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)}=r . ~ \$
$$

5.03 Summary Table for the Gradient Operator

Gradient operator

$$
\vec{\nabla}=\frac{\hat{\mathbf{e}}_{1}}{h_{1}} \frac{\partial}{\partial u_{1}}+\frac{\hat{\mathbf{e}}_{2}}{h_{2}} \frac{\partial}{\partial u_{2}}+\frac{\hat{\mathbf{e}}_{3}}{h_{3}} \frac{\partial}{\partial u_{3}}
$$

Gradient

$$
\stackrel{\rightharpoonup}{\nabla} V=\frac{\hat{\mathbf{e}}_{1}}{h_{1}} \frac{\partial V}{\partial u_{1}}+\frac{\hat{\mathbf{e}}_{2}}{h_{2}} \frac{\partial V}{\partial u_{2}}+\frac{\hat{\mathbf{e}}_{3}}{h_{3}} \frac{\partial V}{\partial u_{3}}
$$

Divergence

$$
\vec{\nabla} \bullet \overrightarrow{\mathbf{F}}=\frac{1}{h_{1} h_{2} h_{3}}\left(\frac{\partial\left(h_{2} h_{3} F_{1}\right)}{\partial u_{1}}+\frac{\partial\left(h_{3} h_{1} F_{2}\right)}{\partial u_{2}}+\frac{\partial\left(h_{1} h_{2} F_{3}\right)}{\partial u_{3}}\right)
$$

Curl

$$
\vec{\nabla} \times \overrightarrow{\mathbf{F}}=\frac{1}{h_{1} h_{2} h_{3}}\left|\begin{array}{ccc}
h_{1} \hat{\mathbf{e}}_{1} & \frac{\partial}{\partial u_{1}} & h_{1} F_{1} \\
h_{2} \hat{\mathbf{e}}_{2} & \frac{\partial}{\partial u_{2}} & h_{2} F_{2} \\
h_{3} \hat{\mathbf{e}}_{3} & \frac{\partial}{\partial u_{3}} & h_{3} F_{3}
\end{array}\right|
$$

Laplacian $\quad \nabla^{2} V=\frac{1}{h_{1} h_{2} h_{3}}\left(\frac{\partial}{\partial u_{1}}\left(\frac{h_{2} h_{3}}{h_{1}} \frac{\partial V}{\partial u_{1}}\right)+\frac{\partial}{\partial u_{2}}\left(\frac{h_{3} h_{1}}{h_{2}} \frac{\partial V}{\partial u_{2}}\right)+\frac{\partial}{\partial u_{3}}\left(\frac{h_{1} h_{2}}{h_{3}} \frac{\partial V}{\partial u_{3}}\right)\right)$

Scale factors:
Cartesian: $\quad h_{x}=h_{y}=h_{z}=1$.
Cylindrical polar: $\quad h_{\rho}=h_{z}=1, h_{\phi}=\rho$.
Spherical polar: $\quad h_{r}=1, \quad h_{\theta}=r, \quad h_{\phi}=r \sin \theta$.

Example 5.03.1: \quad The Laplacian of V in spherical polars is

$$
\begin{aligned}
& \nabla^{2} V=\frac{1}{r^{2} \sin \theta}\left(\frac{\partial}{\partial r}\left(r^{2} \sin \theta \frac{\partial V}{\partial r}\right)+\frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial V}{\partial \theta}\right)+\frac{\partial}{\partial \phi}\left(\frac{1}{\sin \theta} \frac{\partial V}{\partial \phi}\right)\right) \\
& \text { or } \nabla^{2} V=\frac{\partial^{2} V}{\partial r^{2}}+\frac{2}{r} \frac{\partial V}{\partial r}+\frac{1}{r^{2}}\left(\frac{\partial^{2} V}{\partial \theta^{2}}+\cot \theta \frac{\partial V}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} V}{\partial \phi^{2}}
\end{aligned}
$$

Example 5.03.2

A potential function $V(\overrightarrow{\mathbf{r}})$ is spherically symmetric, (that is, its value depends only on the distance r from the origin), due solely to a point source at the origin. There are no other sources or sinks anywhere in \mathbb{R}^{3}. Deduce the functional form of $V(\overrightarrow{\mathbf{r}})$.
$V(\overrightarrow{\mathbf{r}})$ is spherically symmetric $\Rightarrow V(r, \theta, \phi)=f(r)$
In any regions not containing any sources of the vector field, the divergence of the vector field $\overrightarrow{\mathbf{F}}=\vec{\nabla} V$ (and therefore the Laplacian of the associated potential function V) must be zero. Therefore, for all $r \neq 0, \operatorname{div} \overrightarrow{\mathbf{F}}=\vec{\nabla} \cdot \vec{\nabla} V=\nabla^{2} V=0$
But

$$
\begin{aligned}
& \nabla^{2} V=\frac{1}{r^{2} \sin \theta}\left(\frac{\partial}{\partial r}\left(r^{2} \sin \theta \frac{\partial V}{\partial r}\right)+\frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial V}{\partial \theta}\right)+\frac{\partial}{\partial \phi}\left(\frac{1}{\sin \theta} \frac{\partial V}{\partial \phi}\right)\right) \\
& \Rightarrow \nabla^{2} V=\frac{1}{r^{2} \sin \theta}\left(\frac{d}{d r}\left(r^{2} \sin \theta \frac{d V}{d r}\right)+0+0\right)=0 \\
& \Rightarrow \frac{d}{d r}\left(r^{2} \frac{d V}{d r}\right)=0 \Rightarrow r^{2} \frac{d V}{d r}=B \quad \Rightarrow \frac{d V}{d r}=B r^{-2} \\
& \Rightarrow V=\frac{B r^{-1}}{-1}+A, \text { where } A, B \text { are arbitrary constants of integration. }
\end{aligned}
$$

Therefore the potential function must be of the form

$$
V(r, \theta, \phi)=A-\frac{B}{r}
$$

This is the standard form of the potential function associated with a force that obeys the inverse square law $F \propto \frac{1}{r^{2}}$.

5.04 Derivatives of Basis Vectors

Cartesian: $\quad \frac{d}{d t} \hat{\mathbf{i}}=\frac{d}{d t} \hat{\mathbf{j}}=\frac{d}{d t} \hat{\mathbf{k}}=\overrightarrow{\mathbf{0}}$

$$
\begin{aligned}
\overrightarrow{\mathbf{r}} & =x \hat{\mathbf{i}}+y \hat{\mathbf{j}}+z \hat{\mathbf{k}} \\
\Rightarrow \quad \overrightarrow{\mathbf{v}} & =\dot{x} \hat{\mathbf{i}}+\dot{y} \hat{\mathbf{j}}+\dot{z} \hat{\mathbf{k}}
\end{aligned}
$$

Cylindrical Polar Coordinates:

$x=\rho \cos \phi, \quad y=\rho \sin \phi, \quad z=z$

$$
\begin{aligned}
& \frac{d}{d t} \hat{\boldsymbol{\rho}}=\frac{d \phi}{d t} \hat{\boldsymbol{\phi}} \\
& \frac{d}{d t} \hat{\boldsymbol{\phi}}=-\frac{d \phi}{d t} \hat{\boldsymbol{\rho}} \\
& \frac{d}{d t} \hat{\mathbf{k}}=\overrightarrow{\mathbf{0}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{r}=\rho \hat{\rho}+z \hat{\mathbf{k}} \\
& \Rightarrow \quad \overrightarrow{\mathbf{v}}=\dot{\rho} \hat{\rho}+\rho \dot{\phi} \hat{\phi}+\dot{z} \hat{\mathbf{k}}
\end{aligned}
$$

[radial and transverse components of $\overrightarrow{\mathbf{v}}$]

Spherical Polar Coordinates.

The "declination" angle θ is the angle between the positive z axis and the radius vector $\overrightarrow{\mathbf{r}} . \quad 0 \leq \theta \leq \pi$.

The "azimuth" angle ϕ is the angle on the $x-y$ plane, measured anticlockwise from the positive x axis, of the shadow of the radius vector. $0 \leq \phi<2 \pi$.

$$
z=r \cos \theta
$$

The shadow of the radius vector on the $x-y$ plane has length $r \sin \theta$.

It then follows that

$$
\begin{aligned}
& x=r \sin \theta \cos \phi \quad \text { and } \quad y=r \sin \theta \sin \phi \\
& \begin{array}{l}
\frac{d}{d t} \hat{\mathbf{r}}=\frac{d \theta}{d t} \hat{\boldsymbol{\theta}}+\frac{d \phi}{d t} \sin \theta \hat{\boldsymbol{\phi}} \\
\frac{d}{d t} \hat{\boldsymbol{\theta}}=-\frac{d \theta}{d t} \hat{\mathbf{r}}+\frac{d \phi}{d t} \cos \theta \hat{\boldsymbol{\phi}} \\
\frac{d}{d t} \hat{\boldsymbol{\phi}}=-\frac{d \phi}{d t}(\sin \theta \hat{\mathbf{r}}+\cos \theta \hat{\boldsymbol{\theta}})
\end{array} \quad \Rightarrow \mathrm{l}
\end{aligned}
$$

Example 5.04.1

Find the velocity and acceleration in cylindrical polar coordinates for a particle travelling along the helix $x=3 \cos 2 t, y=3 \sin 2 t, z=t$.

Cylindrical polar coordinates: $x=\rho \cos \phi, \quad y=\rho \sin \phi, \quad z=z$

$$
\Rightarrow \quad \rho^{2}=x^{2}+y^{2}, \quad \tan \phi=\frac{y}{x}
$$

$$
\rho^{2}=9 \cos ^{2} 2 t+9 \sin ^{2} 2 t=9 \quad \Rightarrow \rho=3 \quad \Rightarrow \quad \dot{\rho}=0
$$

$$
\tan \phi=\frac{3 \sin 2 t}{3 \cos 2 t}=\tan 2 t \quad \Rightarrow \quad \phi=2 t \quad \Rightarrow \quad \dot{\phi}=2
$$

$$
z=t \quad \Rightarrow \quad \dot{z}=1
$$

$\Rightarrow \quad \overrightarrow{\mathbf{r}}=3 \hat{\boldsymbol{\rho}}+z \hat{\mathbf{k}}$
$\Rightarrow \quad \stackrel{\rightharpoonup}{\mathbf{v}}=\frac{d \overrightarrow{\mathbf{r}}}{d t}=\dot{\rho} \hat{\boldsymbol{\rho}}+\rho \dot{\phi} \hat{\boldsymbol{\phi}}+\dot{z} \hat{\mathbf{k}}=0 \hat{\boldsymbol{\rho}}+3 \times 2 \hat{\boldsymbol{\phi}}+1 \hat{\mathbf{k}}=\underline{\underline{6 \hat{\boldsymbol{\phi}}+\hat{\mathbf{k}}}}$
[The velocity has no radial component - the helix remains the same distance from the z axis at all times.]
$\stackrel{\rightharpoonup}{\mathbf{a}}=\frac{d \stackrel{\rightharpoonup}{\mathbf{v}}}{d t}=6 \dot{\hat{\boldsymbol{\phi}}}+\dot{\hat{\mathbf{k}}}=-6 \dot{\phi} \hat{\boldsymbol{\rho}}+\overrightarrow{\mathbf{0}}=\underline{\underline{-12} \hat{\boldsymbol{\rho}}}$
[The acceleration vector points directly at the z axis at all times.]

Other examples are in the problem sets.

6. Calculus of Variations

The method of calculus of variations involves finding the path between two points that provides the minimum (or maximum) value of integrals of the form

$$
\int_{a}^{b} F\left(x, y, y^{\prime}\right) d x
$$

Sections in this Chapter:

6.01 Introduction
6.02 Theory
6.03 Examples

Sections for reference; not examinable:
6.04 Integrals with more than One Dependent Variable
6.05 Integrals with Higher Derivatives
6.06 Integrals with Several Independent Variables
6.07 Integrals subject to a Constraint

6.01 Introduction

Example 6.01.1

To find the shortest path, (the geodesic), between two points, we need to find an expression for the arc length along a path between the two points.

Consider a pair of nearby points.
The element of arc length Δs is approximately the hypotenuse of the triangle.

$$
\begin{aligned}
(\Delta s)^{2} & \approx(\Delta x)^{2}+(\Delta y)^{2} \\
\Rightarrow \frac{(\Delta s)^{2}}{(\Delta x)^{2}} & \approx \frac{(\Delta x)^{2}}{(\Delta x)^{2}}+\frac{(\Delta y)^{2}}{(\Delta x)^{2}}
\end{aligned}
$$

In the limit as the two points approach each other and $\Delta x \rightarrow 0$, we obtain
$\left(\frac{d s}{d x}\right)^{2}=1+\left(\frac{d y}{d x}\right)^{2}$
$\Rightarrow\left(\frac{d s}{d x}\right)=\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}$
The arc length s between any two points $x=a$ and $x=b$ along any path C in \mathbb{R}^{2} is the line integral
$s=\int_{C} d s=\int_{C} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=\int_{C} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x \quad$ where C is the path $y=f(x)$

The geodesic will be the path C for which the line integral for s attains its minimum value. Of course, in a flat space such as \mathbb{R}^{2}, that geodesic is just the straight line between the two points.

6.02 Theory

We wish to find the curve $y(x)$ which passes through the points $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$ and which minimizes the integral

$$
I=\int_{x_{0}}^{x_{1}} F\left(x, y(x), y^{\prime}(x)\right) d x
$$

Consider the one parameter family of curves $y(x)=u(x)+\alpha \eta(x)$, where α is a real parameter, $\eta(x)$ is an arbitrary function except for the requirement $\eta\left(x_{0}\right)=\eta\left(x_{1}\right)=0$ and $u(x)$ represents the (as yet unknown) solution.

Every member of this family of curves passes through the points $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$.
For any member of the family,

$$
I(\alpha)=\int_{x_{0}}^{x_{1}} F\left(x, u(x)+\alpha \eta(x), u^{\prime}(x)+\alpha \eta^{\prime}(x)\right) d x
$$

we know that $y(x)=u(x)$ minimizes I.
Therefore the minimum for I occurs when $\alpha=0$, so that $\left.\frac{d I}{d \alpha}\right|_{\alpha=0}=0$.
Carrying out a Leibnitz differentiation of the integral $I(\alpha)$,

$$
\begin{aligned}
& \frac{d I}{d \alpha}=0-0+\int_{x_{0}}^{x_{1}} \frac{\partial}{\partial \alpha} F\left(x, u(x)+\alpha \eta(x), u^{\prime}(x)+\alpha \eta^{\prime}(x)\right) d x \\
& =\int_{x_{0}}^{x_{1}}\left[0+\frac{\partial F}{\partial y} \frac{\partial}{\partial \alpha}(u(x)+\alpha \eta(x))+\frac{\partial F}{\partial y^{\prime}} \frac{\partial}{\partial \alpha}\left(u^{\prime}(x)+\alpha \eta^{\prime}(x)\right)\right] d x
\end{aligned}
$$

At the minimum $\alpha=0$, so that $y(x)=u(x)$ and $y^{\prime}(x)=u^{\prime}(x)$. Therefore
$0=\int_{x_{0}}^{x_{1}}\left[\eta(x) \frac{\partial F}{\partial u}+\eta^{\prime}(x) \frac{\partial F}{\partial u^{\prime}}\right] d x$
Also note, by the product rule of differentiation, that
$\frac{d}{d x}\left(\eta(x) \frac{\partial F}{\partial u^{\prime}}\right)=\eta^{\prime}(x) \frac{\partial F}{\partial u^{\prime}}+\eta(x) \frac{d}{d x}\left(\frac{\partial F}{\partial u}\right)$
Therefore the integral can be written as
$0=\int_{x_{0}}^{x_{1}}\left[\eta(x) \frac{\partial F}{\partial u}+\frac{d}{d x}\left(\eta(x) \frac{\partial F}{\partial u^{\prime}}\right)-\eta(x) \frac{d}{d x}\left(\frac{\partial F}{\partial u^{\prime}}\right)\right] d x$
$0=\int_{x_{0}}^{x_{1}} \eta(x)\left[\frac{\partial F}{\partial u}-\frac{d}{d x}\left(\frac{\partial F}{\partial u^{\prime}}\right)\right] d x+\int_{x_{0}}^{x_{1}} \frac{d}{d x}\left(\eta(x) \frac{\partial F}{\partial u^{\prime}}\right) d x$
$0=\int_{x_{0}}^{x_{1}} \eta(x)\left[\frac{\partial F}{\partial u}-\frac{d}{d x}\left(\frac{\partial F}{\partial u^{\prime}}\right)\right] d x+\left[\eta(x) \frac{\partial F}{\partial u^{\prime}}\right]_{x_{0}}^{x_{1}}$

But $\eta\left(x_{0}\right)=\eta\left(x_{1}\right)=0$
Therefore the minimizing curve $u(x)$ satisfies

$$
\int_{x_{0}}^{x_{1}} \eta(x)\left[\frac{\partial F}{\partial u}-\frac{d}{d x}\left(\frac{\partial F}{\partial u^{\prime}}\right)\right] d x=0
$$

But $\eta(x)$ is an arbitrary function of x, which leads to

$$
\frac{\partial F}{\partial u}-\frac{d}{d x}\left(\frac{\partial F}{\partial u^{\prime}}\right)=0
$$

Thus, if $y=f(x)$ is a path that minimizes the integral $\int_{a}^{b} F\left(x, y, y^{\prime}\right) d x$, then $y=f(x)$ and $F\left(x, y, y^{\prime}\right)$ must satisfy the Euler equation for extremals

$$
\frac{d}{d x}\left(\frac{\partial F}{\partial y^{\prime}}\right)-\frac{\partial F}{\partial y}=0
$$

Euler's equation requires the assumption that $F\left(x, y, y^{\prime}\right)$ has continuous second derivatives in all three of its variables and that all members of the family $y(x)=u(x)+\alpha \eta(x)$ have continuous second derivatives.

Expansion of Euler's Equation:

$$
\begin{aligned}
& \frac{d}{d x}\left(\frac{\partial F}{\partial y^{\prime}}\left(x, y(x), y^{\prime}(x)\right)\right)-\frac{\partial F}{\partial y}\left(x, y(x), y^{\prime}(x)\right)=0 \\
& \Rightarrow \frac{\partial^{2} F}{\partial x \partial y^{\prime}}+y^{\prime}(x) \frac{\partial^{2} F}{\partial y \partial y^{\prime}}+y^{\prime \prime}(x) \frac{\partial^{2} F}{\partial y^{\prime 2}}-\frac{\partial F}{\partial y}=0
\end{aligned}
$$

or

$$
y^{\prime \prime} F_{y^{\prime} y^{\prime}}+y^{\prime} F_{y y^{\prime}}+\left(F_{x y^{\prime}}-F_{y}\right)=0
$$

Note: Leibnitz differentiation of $I(z)=\int_{f(z)}^{g(z)} F(x, z) d x$ with respect to z is:

$$
\frac{d I}{d z}=g^{\prime}(z) F(g(z), z)-f^{\prime}(z) F(f(z), z)+\int_{f(z)}^{g(z)} \frac{\partial}{\partial z} F(x, z) d x
$$

A special case of this is $\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)$.

