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7. Fourier Series and Fourier Transforms    
 

Fourier series have multiple purposes, including the provision of series solutions to some 

linear partial differential equations with boundary conditions (as will be reviewed in 

Chapter 8).   Fourier transforms are often used to extract frequency information from 

time series data.   For lack of time in this course, only a brief introduction is provided 

here. 

 

Sections in this Chapter:  

 

7.01 Orthogonal Functions 

7.02 Definitions of Fourier Series 

7.03 Half-Range Fourier Series 

7.04 Frequency Spectrum 

 

Sections for reference only, not examinable in this course: 

7.05 Complex Fourier Series 

7.06 Fourier Integrals 

7.07 Complex Fourier Integrals 

7.08 Some Fourier Transforms 

7.09 Summary of Fourier Transforms 
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7.01 Orthogonal Functions 

 

The inner product (or scalar product or dot product) of two vectors u and v is defined in 

Cartesian coordinates in 3  by  
3
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k

u v u v u v u v


   u v  

The inner product possesses the four properties: 

Commutative:   u v v u  

Scalar multiplication:      ,k k k u v u v  

Positive definite:  
 

 

0 if

0 if

  

 

u 0
u u

u 0
 

Associative:      u v w u v u w  

Vectors ,u v  are orthogonal if and only iff  0u v .    

A pair of non-zero orthogonal vectors intersects at right angles. 

 

The inner product of two real-valued functions  1f   and  2f   on an interval [a, b]  may be 

defined in a way that also possesses these four properties: 

 

     1 2 1 2,
b

a
f f f x f x dx   

 

Two functions  1f   and  2f   are said to be orthogonal on an interval [a, b] if their inner 

product is zero: 

     1 2 1 2, 0
b

a
f f f x f x dx   

 

A set of real-valued functions          0 1 2, , , , nx x x x     is orthogonal on the 

interval [a, b] if the inner product of any two of them is zero: 

       , 0m n m n

b

a
x x dx m n       

 

If, in addition, the inner product of any function in the set with itself is unity, then the set 

is orthonormal:   

     
 

 

0
,

1
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mn
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m n
    


   


  

where mn  is the “Kronecker delta” symbol. 
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Just as any vector in 3  may be represented by a linear combination of the three 

Cartesian basis vectors, (which form the orthonormal set {i, j, k}), so a real valued 

function  f (x)  defined on [a, b] may be written as a linear combination of the elements of 

an infinite orthonormal set of functions       0 1 2, , ,x x x    on [a, b]: 

 

       0 0 1 1 2 2f x c x c x c x       

 

To find the coefficients  cn, multiply  f (x)  by  n(x) and integrate over [a, b]: 
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b b b
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b
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f x x dx c x x dx c x x dx

c x x dx

    

 




  



  

 
 

 

But the {  n(x) } are an orthonormal set.   Therefore all but one of the terms in the 

infinite series are zero.   The exception is the term for which  m = n, where the integral is 

unity.   Therefore  

   n n

b

a
c f x x dx   

and  

       
0

n n

n

b

a
f x f x x dx x 



   
   

  
   

 

If the set is orthogonal but not orthonormal, then the form for f (x) changes to  
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The orthogonal set { n(x)} is complete if the only function that is orthogonal to all 

members of the set is the zero function  f (x)  0.   An expansion of every function f (x) in 

terms of an orthogonal or orthonormal set { n(x)} is not possible if { n(x)} is not 

complete. 

 

Also note that a generalised form of an inner product can be defined using a weighting 

function w(x), so that, in terms of a complete orthogonal set { n(x)}, 
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We shall usually be concerned with the case  w(x)  1 only. 
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Example 7.01.1   

 

Show that the set { sin nx }  n  is orthogonal but not orthonormal and not complete 

on [–, +]. 

 

 

    
1

sin sin cos cos
2

mx nx dx m n x m n x dx
 

  
      

If m  n, then  

   sin sin1
sin sin 0

2

m n x m n x
mx nx dx

m n m n










  
   

  
  

The set { sin nx } is therefore orthogonal on [–, +]. 

 

If m = n, then  

 
1 1 sin 2

sin sin 1 cos 2 1
2 2 2

nx
nx nx dx nx dx x

n

 

  


 



 
      

    

so the set is not orthonormal, (although the set 
sin nx



 
 
 

 is orthonormal). 

 

To show that the set is not complete on [–, +], we need to find a non-trivial function 

that is orthogonal to sin nx for all positive integer values of n. 

 

Note that sin nx is an odd function of x and that the range of integration is symmetric 

about x = 0.   The product of any odd function with any even function is another odd 

function.   The integral of any odd function over a range of integration that is symmetric 

about x = 0 is zero.   This leads us to try any even function.  The simplest non-trivial even 

function is  f (x)  1. 

 

cos
1sin 0

nx
nx dx n

n



 


 
     
   

 

The function f (x)  1 is therefore orthogonal to all members of the set { sin nx }. 

The set { sin nx } is therefore not complete. 
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7.02 Definitions of Fourier Series 

 

Example 7.02.1    

 

Show that the set  1, cos , sin ,
n x n x

n
L L

        
       

       
 is orthogonal but not 

orthonormal on [–L, L]. 

 

 

Inner product of any two distinct sine functions (m  n): 

 

   1
sin sin cos cos

2

L L

L L

m n x m n xm x n x
dx dx

L L L L
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Inner product of any two distinct cosine functions (m  n): 

 

   1
cos cos cos cos

2

L L
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dx dx
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 1
sin sin 0

2

L

L

m n x m n xL L

m n L m n L

 

 


  
   

  
 

This result holds also for m = 0, for which cos 1
m x

L

 
 

 
. 

 

Inner product of any sine function with any cosine function: 

 

   1
sin cos sin sin

2

L L
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L L L L
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This result holds also for m  n = 0, for which cos 1
n x

L

 
 

 
. 
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Example 7.02.1   (continued) 

 

Therefore the set   1, cos , sin ,
n x n x

n
L L

        
       

       
 is orthogonal on [–L, L]. 

 

Inner product of any sine function with itself:  

 

1 2
sin sin 1 cos

2

L L

L L

n x n x n x
dx dx

L L L

  

 

     
      

        

1 2
sin

2 2

L

L

L n x
x L

n L



 

 
   

 
 

 

Inner product of any cosine function with itself (n > 0):  

 

1 2
cos cos 1 cos

2

L L

L L

n x n x n x
dx dx

L L L

  

 

     
      

        

1 2
sin

2 2

L

L

L n x
x L

n L



 

 
   

 
 

 

Inner product of the function 1 with itself:  

 

1 1 2
L L

LL
dx x L L


    
   

 

Therefore the set is not orthonormal for any choice of L, although the related set  

 
1 1 1

, cos , sin ,
2

n x n x
n

L LL L L

        
       

       
  is orthonormal on [–L, L]. 
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Using the results from Example 7.02.1, we can express most real-valued functions  f (x) 

defined on (–L, L), in terms of an infinite series of trigonometric functions: 

 

 

 

The Fourier series of  f (x) on the interval (–L, L) is 

 

  0

1

cos sin
2

n n
n

a n x n x
f x a b

L L

 



     
      

    
  

where 

   
1

cos , 0,1, 2, 3,n

L

L

n x
a f x dx n

L L





 
  

   

and 

   
1

sin , 1, 2, 3,
L

n
L

n x
b f x dx n

L L





 
  

   

 

 

The {an, bn} are the Fourier coefficients of f (x). 

 

Note that the cosine functions (and the function 1) are even, while the sine functions are 

odd.    

 

If  f (x)  is even (f (–x) =  + f (x)  for all x), then bn = 0  for all n, leaving a Fourier cosine 

series (and perhaps a constant term) only for  f (x). 

 

If  f (x)  is odd (f (–x) =  – f (x)  for all x), then an = 0  for all n, leaving a Fourier sine 

series only for  f (x). 
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Example 7.02.2   

 

Expand   
 

 

0 0

0

x
f x

x x



 

  
 

   
  in a Fourier series. 
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Therefore the Fourier series for  f (x) is  
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1

1 1 1
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Example 7.02.2    (Additional Notes – also see  

   "www.engr.mun.ca/~ggeorge/9420/demos/") 

The first few partial sums in the Fourier series  
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1

1 1 1
cos sin

4
n

n

f x nx nx x
n n


 





  

       
 
 

  

are  

0
4

S


  

1

2
cos sin

4
S x x




    

2

2 1
cos sin sin 2

4 2
S x x x




     

3

2 1 2 1
cos sin sin 2 cos3 sin3

4 2 9 3
S x x x x x



 
       

and so on. 

 

The graphs of successive partial sums approach  f (x)  more closely, except in the vicinity 

of any discontinuities, (where a systematic overshoot occurs, the Gibbs phenomenon). 
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Example 7.02.3    

 

Find the Fourier series expansion for the standard square wave,  

 
 

 

1 1 0

1 0 1

x
f x

x

   
 

   
 

 

 

L = 1. 

 

The function is odd (f (–x) =  – f (x)  for all x). 

Therefore  an = 0  for all n.   We will have a Fourier sine series only. 

 

 

  

0 1

1 0

0 1

1 0

1

1

1
sin sin sin

1
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n
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1 1

1 12 4 1
sin sin 2 1

2 1
n k
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f x n x k x
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The graphs of the third and ninth partial sums (containing two and five non-zero terms 

respectively) are displayed here, together with the exact form for  f (x), with a periodic 

extension beyond the interval (–1, +1) that is appropriate for the square wave. 

 

 
 

 3y S x  
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Example 7.02.3   (continued) 

 

 9y S x  

 
 

 

 

 

Convergence   
 

At all points ox x  in (–L, L) where  f (x)  is continuous and is either differentiable or the 

limits  
o

lim
x x

f x


  and  
o

lim
x x

f x


  both exist, the Fourier series converges to f (x). 

 

At finite discontinuities, (where the limits  
o

lim
x x

f x


  and  
o

lim
x x

f x


  both exist), the 

Fourier series converges to 
   o o

2

f x f x  
, 

(using the abbreviations        
o o

o olim and lim
x x x x

f x f x f x f x
  

    ). 

 

 
  f (x) not continuous      continuous but       continuous and 

        at x = xo               not differentiable      differentiable     

In all cases, the Fourier series at  ox x   converges to 
   o o

2

f x f x  
 (the red dot). 

 


	7. Fourier Series
	7.01 Orthogonal Functions
	7.02 Definitions of Fourier Series
	Fourier Series definition
	Ex. 7.02.2
	Ex. 7.02.3 square wave


