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7.03 Half-Range Fourier Series 

 

A Fourier series for  f (x), valid on [0, L], may be constructed by extension of the domain 

to [–L, L]. 

 

An odd extension leads to a Fourier sine series:  
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An even extension leads to a Fourier cosine series:  

 

  0

1

cos
2

n
n

a n x
f x a

L






 

   
 

  

where 

   
0

2
cos , 0,1, 2, 3,n

L
n x

a f x dx n
L L

 
  

   

and there is automatic continuity of the Fourier cosine series at x = 0 and at x =  L. 
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Example 7.03.1    

 

Find the Fourier sine series and the Fourier cosine series for  f (x) = x  on [0, 1]. 

 

 

f (x) = x  happens to be an odd function of x for any domain centred on x = 0.   The odd 

extension of  f (x)  to the interval  [–1, 1]  is  f (x)  itself. 

 

Evaluating the Fourier sine coefficients,  
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Therefore the Fourier sine series for  f (x) = x  on [0, 1] (which is 

also the Fourier series for  f (x) = x  on [–1, 1] ) is  
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This function happens to be continuous and differentiable at x = 0, but is clearly 

discontinuous at the endpoints of the interval (x = 1). 

 

Fifth order partial sum of the Fourier sine series for  f (x) = x  on [0, 1] 
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Example 7.03.1   (continued) 

 

The even extension of  f (x)  to the interval  [–1, 1]  is  f (x) = | x |. 

   

Evaluating the Fourier cosine coefficients,  
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Evaluating the first few terms,  
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Therefore the Fourier cosine series for  f (x) = x  on [0, 1] (which is also the Fourier series 

for  f (x) = | x |  on [–1, 1] ) is  
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Example 7.03.1   (continued) 

 

 

Third order partial sum of the Fourier cosine series for  f (x) = x  on [0, 1] 

 
Note how rapid the convergence is for the cosine series compared to the sine series. 

 

 3y S x  for cosine series and  5y S x  for sine series for  f (x) = x  on [0, 1] 
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7.04 Frequency Spectrum 

 

The Fourier series may be combined into a single cosine series. 

Let p be the fundamental period.   If the function  f (x)  is not periodic at all on [–L, L], 

then the fundamental period of the extension of  f (x) to the entire real line is 2p L . 

 

Define the fundamental frequency 
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   . 

The Fourier series for f (x) on [–L, L] is, from page 7.07, 
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Let the phase angle n  be such that tan n
n

n

b

a
   ,  

so that sin and cosn n
n n

n n

b a

c c
      

where the amplitude is 2 2
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Also, in the trigonometric identity  cos cos sin sin cosA B A B A B   , 

replace A by n x  and B by n . Then  
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Therefore the phase angle or harmonic form of the Fourier series is 
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Example 7.04.1    

 

Plot the frequency spectrum for the standard square wave,  
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From Example 7.02.3, the Fourier series for the standard square wave is  
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The fundamental frequency is   . 

The absence of cosine terms       
2

0 andn n n na n c b n       . 

The harmonic form of the Fourier series is therefore 
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The amplitudes are therefore  

 

 

4
odd

0 even

n

n
nc

n






 



 

 
 

 



ENGI 9420 7.04  -  Frequency Spectrum Page 7.18 

 

Example 7.04.2    

 

Plot the frequency spectrum for the periodic extension of   

  , 1 1f x x x     

 

 

 
 

f (x) is even       bn = 0  n      n = 0  n   and  cn =  | an |  n > 0 . 
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(which converges very rapidly, as this third partial sum demonstrates)  
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Example 7.04.2   (continued) 

 

The harmonic amplitudes are 
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The frequencies therefore diminish rapidly: 
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