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Example 8.02.3    
 
An elastic string of length L is fixed at both ends (x = 0 and x = L).   The string is initially 
in its equilibrium state [y(x, 0) = 0 for all x] and is released with the initial velocity 

( )
( )

,0x

y g x
t

∂
=

∂
.   Find the displacement  y(x, t) at all locations on the string (0 < x < L) 

and at all subsequent times (t > 0). 
 
 
The boundary value problem for the displacement function  y(x, t)  is:  

   
2 2

2
2 2 for 0 and 0y yc x L t

t x
∂ ∂

= < < >
∂ ∂

 

Both ends fixed for all time:  y(0, t)  =  y(L, t)  =  0   for   t > 0 
 
Initial configuration of string:  y(x, 0)  =  0   for   0 < x < L  
 

String released with initial velocity: 
( )

( )
,0

for 0
x

y g x x L
t

∂
= ≤ ≤

∂
 

As before, attempt a solution by the method of the separation of variables. 
 
Substitute  y(x, t)  =  X(x) T(t)  into the PDE: 
 

( ) ( )( ) ( ) ( )( )
2 2 2 2

2 2
2 2 2 2

d T d XX x T t c X x T t X c T
t x dt dx
∂ ∂

= ⇒ =
∂ ∂

 

Again, each side must be a negative constant. 
2 2

2
2 2 2

1 1d T d X
c T dt X dx

λ⇒ = = −  

 
We now have the pair of ODEs 

2 2
2 2 2

2 20 and 0d X d TX c T
dx dt

λ λ+ = + =  

The general solutions are  
( ) ( ) ( ) ( ) ( ) ( )cos sin and cos sinX x A x B x T t C ct D ctλ λ λ λ= + = +  

respectively, where  A, B, C and D are arbitrary constants. 
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Example 8.02.3   (continued) 
 
Consider the boundary conditions:  
( ) ( ) ( )0, 0 0 0y t X T t t= = ∀ ≥  

For a non-trivial solution, this requires  ( )0 0 0X A= ⇒ = . 
 
( ) ( ) ( ) ( ), 0 0 0y L t X L T t t X L= = ∀ ≥ ⇒ =  

( ) ( )sin 0 ,n
nB L n
L
πλ λ⇒ = ⇒ = ∈  

 
We now have a solution only for a discrete set of eigenvalues λn, with corresponding 
eigenfunctions  

( ) ( )sin , 1, 2, 3,n
n xX x n

L
π = = 

 
  

and 

( ) ( ) ( ) ( ) ( ), sin , 1, 2, 3,n n n n
n xy x t X x T t T t n

L
π = = = 

 
  

So far, the solution has been identical to Example 8.02.1. 
 
Consider the initial condition   y(x, 0)  =  0 : 

( ) ( ) ( ) ( ),0 0 0 0 0 0y x X x T x T= ⇒ = ∀ ⇒ =  
The initial value problem for  T(t)  is now 

( )2 2 0 , 0 0 , where nT c T T
L
πλ λ′′ + = = =  

the solution to which is  

( ) ( )sin ,n n
n c tT t C n

L
π = ∈ 

 
  

Our eigenfunctions for y are now  

( ) ( ) ( ) ( ), sin sin ,n n n n
n x n c ty x t X x T t C n

L L
π π   = = ∈   
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Example 8.02.3   (continued) 
 
Differentiate term by term and impose the initial velocity condition: 

( )
( )

, 0 1
sin

x n
n

y n c n xC g x
t L L

π π∞

=

∂    = =   ∂    
∑  

which is just the Fourier sine series expansion for the function  g(x). 
The coefficients of the expansion are  

( )
0

2 sin
L

n
n c n uC g u du

L L L
π π =  

 ∫  

which leads to the complete solution 
 

( ) ( )
01

2 1, sin sin sin
L

n

n u n x n c ty x t g u du
c n L L L

π π π
π

=

∞       =              ∫∑  

 
This solution is valid for any initial velocity function  g(x)  that is continuous with a 
piece-wise continuous derivative on [0, L] with  g(0) = g(L) = 0. 
 
 
The solutions for Examples 8.02.1 and 8.02.3 may be superposed. 
 

Let  ( )1 ,y x t   be the solution for initial displacement  f (x) and zero initial velocity.  

Let  ( )2 ,y x t   be the solution for zero initial displacement and initial velocity  g(x).  

Then  ( ) ( ) ( )1 2, , ,y x t y x t y x t= +   satisfies the wave equation 
(the sum of any two solutions of a linear homogeneous PDE is also a solution),  
and satisfies the boundary conditions  y(0, t)  =  y(L, t)  =  0 : 
 

( ) ( ) ( ) ( )1 2,0 ,0 ,0 0y x y x y x f x= + = + ,   
which satisfies the condition for initial displacement  f (x). 

( ) ( ) ( ) ( )1 2,0 ,0 ,0 0t tty x y x y x g x= + = + ,   
which satisfies the condition for initial velocity  g(x). 
 
Therefore the sum of the two solutions is the complete solution for initial displacement 
f (x)  and  initial velocity  g(x): 
 

( ) ( )

( )

0

0

1

1

2, sin sin cos

2 1 sin sin sin

L

n

L

n

n u n x n c ty x t f u du
L L L L

n u n x n c tg u du
c n L L L

π π π

π π π
π

=

=

∞

∞

      =              

      +              

∫

∫

∑

∑
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Example 8.02.4    
 
An elastic string of length 1 m is fixed at both ends (x = 0 and x = 1).   The string is 
initially in the shape of an arc of a parabola [y(x, 0) = x – x2  for 0 < x < 1] and is released 

with the initial velocity 
( )

( )2

,0
0 1

x

y x x x
t

∂
= − ≤ ≤

∂
.   It is known that the wave speed 

is c = 5 m s–1.   Find the displacement  y(x, t) at all locations on the string (0 < x < 1) and 
at all subsequent times (t > 0). 
 
 
In the formula for the complete solution of the wave equation,  

( ) ( )

( )

0

0

1

1

2, sin sin cos

2 1 sin sin sin

L

n

L

n

n u n x n c ty x t f u du
L L L L

n u n x n c tg u du
c n L L L

π π π

π π π
π

=

=

∞

∞

      =              

      +              

∫

∫

∑

∑
 

 
we know that  L = 1,  c = 5  and   f (x)  =  g(x)  =   x – x2   for 0 < x < 1. 
 
Both integrals inside the summations are the same: 

( )2

0

1
sin

1
n uu u duπ − = 

 ∫  

 

( )
( ) ( )3 2

1

0

1 2 1 2cos sin
u u un u n u

n n n
π π

π π π

  − −  − +
    

 

 

( )
( )

( )3 3
2 20 1 0 0 0n

n nπ π

      
      = − − + − − +
            

 

 

( )
( )( )

( )

( )
( )3

3

0 even
2 41 1 odd

n
n

nn nπ π


= − − = 



  Let (odd n)  =  2k – 1   

The complete solution is 

( )
( )

( ) ( ) ( )
( )33

1

sin 5 2 18 1, sin 2 1 cos5 2 1
5 2 12 1k

k t
y x t k x k t

kk
π

π π
π π

=

∞
 −

= − − +  −−  ∑  

A Maple file for this solution is available at 
"www.engr.mun.ca/~ggeorge/9420/demos/ex8024.mws". 

http://www.engr.mun.ca/~ggeorge/9420/demos/ex8024.mws�
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8.03 The Wave Equation – Vibrating Infinite String    
 
Example 8.03.1    
 
An elastic string of infinite length is displaced into the form  y = f (x)  and is released 
from rest.   Find the displacement  y(x, t) at all locations on the string x∈  and at all 
subsequent times (t > 0). 
 
 
The boundary value problem for the displacement function  y(x, t)  is:  

   
2 2

2
2 2 for and 0y yc x t

t x
∂ ∂

= −∞ < < ∞ >
∂ ∂

 

 
Initial configuration of string:  y(x, 0)  =  f (x)   for  x∈  
 

String released from rest:  
( ),0

0 for
x

y x
t

∂
= ∈

∂
  

We no longer have the additional boundary conditions of fixed endpoints. 
However, it is reasonable to insist upon a bounded solution. 
 
 
Separation of Variables (or Fourier Method) 
 
Attempt a solution of the form   y(x, t)  =  X(x) T(t)  
Again we find the linked pair of ordinary differential equations 

2 2 20 and 0X X T c Tω ω′′ ′′+ = + =  
 
If  ω = 0 then  X(x)  =  ax + b.   However, for a bounded solution, we require  a = 0. 
For other values of  ω, X(x)  =  a cos ωx + b sin ωx , which is bounded for all x and all ω. 
The ω = 0 case is a special case of this solution. 
 
We have a continuum of eigenvalues  ω  with corresponding eigenfunctions  

( ) ( ) ( )cos sinX x a x b xω ω ωω ω= +  

It then follows that          ( ) cos sinT t c ct d ctω ω ωω ω= +  
 
Imposing the initial condition of zero velocity,  

( )
( ) ( ) ( )

,0
0 0 0

x

y X x T X x d c x d
t ω ωω∂ ′= = = ∀ ∈ ⇒ =
∂
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Example 8.03.1   (continued) 
 
Therefore we have, for any real ω, a solution of the wave equation and the initial velocity 
condition,  

( ) ( ) ( ) ( ) ( )( ) ( ), cos sin cosy x t X x T t a x b x ctω ω ω ω ωω ω ω= = +  
[where  cω   has been absorbed into the other arbitrary constants  aω   and  bω .] 
 
The superposition of solutions now leads to an integral, not a discrete sum. 

( ) ( ) ( ) ( )( ) ( )0 0
, , cos sin cosy x t y x t d a x b x ct dω ω ωω ω ω ω ω

∞ ∞
= = +∫ ∫  

Imposing the remaining condition,  

( ) ( ) ( )( ) ( )0
,0 cos siny x a x b x d f xω ωω ω ω

∞
= + =∫  

But this is just the Fourier integral representation of  f (x)  on (–∞, ∞). 
Therefore  aω   and  bω   are just the Fourier integral coefficients 

( ) ( ) ( ) ( )1 1cos and sina f u u du b f u u duω ωω ω
π π

∞ ∞

−∞ −∞
= =∫ ∫  

The complete solution is 
  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0

1, cos cos

1 sin sin cos

y x t f u u du x

f u u du x ct d

ω ω
π

ω ω ω ω
π

∞ ∞

−∞

∞

−∞

 =   
 +     

∫

∫

∫
 

 
which, after re-iteration (interchanging the order of integration) is 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )
0

1, cos cos sin sin cosy x t u x u x f u ct d duω ω ω ω ω ω
π

∞ ∞

−∞
= +∫ ∫  

( ) ( ) ( )( ) ( )
0

1, cos cosy x t f u u x ct d duω ω ω
π

∞ ∞

−∞
⇒ = −∫ ∫  

( ) ( )( ) ( )( )( )
0

1 cos cos
2

f u u x ct u x ct d duω ω ω
π

∞ ∞

−∞
= − + + − −∫ ∫  

( ) ( )( ) ( )( )
0

sin sin1
2

u x ct u x ct
f u du

u x ct u x ct
ω

ω
ω ω

π

∞

−∞ =

= ∞
 − + − −

= + 
− + − −  ∫  
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8.04 d’Alembert Solution    
 
One form of the solution to Example 8.03.1,  

( ) ( ) ( )( ) ( )( )
0

sin sin1,
2

u x ct u x ct
y x t f u du

u x ct u x ct
ω

ω
ω ω

π

∞

−∞ =

= ∞
 − + − −

= + 
− + − −  ∫  

suggests that, in general, one might seek solutions to the wave equation of the form  

( ) ( ) ( ),
2

f x ct f x ct
y x t

+ + −
=  

Let  r = x + ct  and  s = x – ct , then ( ) ( ) ( ),
2

f r f s
y r s

+
=  and 

( )( ) ( )( )( )1 0 1 0 1
2

y y r y s f r f s
x r x s x

∂ ∂ ∂ ∂ ∂ ′ ′= + = + × + + ×
∂ ∂ ∂ ∂ ∂

, 

( ) ( )( )
2

2

1 1 1
2

y y y r y s f r f s
x x x r x x s x x

     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ′′ ′′= = + = × + ×     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     
, 

( )( ) ( )( ) ( )( )1 0 0
2

y y r y s f r c f s c
t r t s t

∂ ∂ ∂ ∂ ∂ ′ ′= + = + × + + × −
∂ ∂ ∂ ∂ ∂

, 

( ) ( ) ( )( )
2

2

1
2

y y r y s c f r c c f s c
t r t t s t t

   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ′′ ′′= + = × − × −   ∂ ∂ ∂ ∂ ∂ ∂ ∂   
, 

( ) ( )( ) ( ) ( )( )
2 2

2 2
2 2 2 2

1 1 1 0
2 2

y y f r f s c f r c f s
x c t c

∂ ∂ ′′ ′′ ′′ ′′⇒ − = + − + =
∂ ∂

, 

Therefore ( ) ( ) ( ),
2

f x ct f x ct
y x t

+ + −
=  is a solution to the wave equation for all 

twice differentiable functions  f (u).   This is part of the d’Alembert solution. 
 
This d’Alembert solution satisfies the initial displacement condition: 

( ) ( ) ( ) ( )0 0
,0

2
f x f x

y x f x
+ + −

= =  

Also ( ) ( ) ( ) ( ) ( )
0 0

, 0
2 2t t

c f x ct c f x ct c f x c f x
y x t

t = =

′ ′ ′ ′+ − − −∂
= = =

∂
 

The d’Alembert solution therefore satisfies both initial conditions. 
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A more general d’Alembert solution to the wave equation for an infinitely long string is  
 

( ) ( ) ( ) ( )1,
2 2

x ct

x ct

f x ct f x ct
y x t g u du

c

+

−

+ + −
= + ∫  

 
This satisfies the wave equation  

   
2 2

2
2 2 for and 0y yc x t

t x
∂ ∂

= −∞ < < ∞ >
∂ ∂

 

and 
Initial configuration of string:  y(x, 0)  =  f (x)   for  x∈  
 
and 

Initial speed of string:   
( )

( )
,0

for
x

y g x x
t

∂
= ∈

∂
  

for any twice differentiable functions  f (x)  and  g(x). 
 
Physically, this represents two identical waves, moving with speed c in opposite 
directions along the string. 
 
 

Proof that ( ) ( )1,
2

x ct

x ct
y x t g u du

c

+

−
= ∫  satisfies both initial conditions:  

( ) ( ) ( ) ( )1 1, ,0 0
2 2

x ct x

x ct x
y x t g u du y x g u du

c c

+

−
= ⇒ = =∫ ∫  

 
Using a Leibnitz differentiation of the integral: 

( ) ( ) ( ) ( ) ( )1
2

x ct

x ct

y g x ct x ct g x ct x ct g u du
t c t t t

+

−

 ∂ ∂ ∂ ∂
= + ⋅ + − − ⋅ − + ∂ ∂ ∂ ∂ ∫  

        ( ) ( )( ) ( ) ( )1 0
2 2

g x ct g x ct
c g x ct c g x ct

c
+ + −

= + + − + =  

( ) ( ) ( )
0

0 0
2t

g x g xy g x
t =

+ + −∂
⇒ = =

∂
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Example 8.04.1    
 
An elastic string of infinite length is displaced into the form  y = cos π x/2  on [–1, 1] 
only (and y = 0 elsewhere) and is released from rest.   Find the displacement  y(x, t) at all 
locations on the string x∈  and at all subsequent times (t > 0). 
 
 
For this solution to the wave equation we have initial conditions  

 ( ) ( ) ( )

( )

cos 1 1
2,0

0 otherwise

x x
y x f x

π   − ≤ ≤  = =  



 

and  

 ( ) ( ),0 0y x g x
t

∂
= =

∂
 

 
The d’Alembert solution is  

( ) ( ) ( ) ( ) ( ) ( )1, 0
2 2 2

x ct

x ct

f x ct f x ct f x ct f x ct
y x t g u du

c

+

−

+ + − + + −
= + = +∫  

where ( )
( ) ( )

( )

cos 1 1
2

0 otherwise

x ct
ct x ct

f x ct
π + 

− − ≤ ≤ −  + =   



 

and ( )
( ) ( )

( )

cos 1 1
2

0 otherwise

x ct
ct x ct

f x ct
π − 

− + ≤ ≤ +  − =   



 

We therefore obtain two waves, each of the form of a single half-period of a cosine 
function, moving apart from a superposed state at x = 0 at speed c in opposite directions. 
 
See the web page "www.engr.mun.ca/~ggeorge/9420/demos/ex8041.html" for 
an animation of this solution. 
 

http://www.engr.mun.ca/~ggeorge/9420/demos/ex8041.html�
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Example 8.04.1    (continued) 
 
Some snapshots of the solution are shown here:  
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A more general case of a d’Alembert solution arises for the homogeneous PDE with 
constant coefficients 

2 2 2

2 2 0u u uA B C
x x y y

∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂
 

 
The characteristic (or auxiliary) equation for this PDE is  

2 0A B Cλ λ+ + =  
This leads to the complementary function (which is also the general solution for this 
homogeneous PDE) 

( ) ( ) ( )1 1 2 2, ,u x y f y x f y xλ λ= + + +  
where 

1 2and
2 2

B D B D
A A

λ λ− − − +
= =  

and D  =  B 2 – 4AC  
and  1 2,f f   are arbitrary twice-differentiable functions of their arguments. 

1λ   and  2λ  are the roots (or eigenvalues) of the characteristic equation. 
 
In the event of equal roots, the solution changes to  

( ) ( ) ( ) ( )1 2, ,u x y f y x h x y f y xλ λ= + + +  
where  h(x, y)  is any non-trivial linear function of x and/or y (except  y + λx). 
 
The wave equation is a special case with  y = t, A = 1, B = 0, C = –1/c2 and λ = ± 1/c. 
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Example 8.04.2     
 

2 2 2

2 23 2 0u u u
x x y y

∂ ∂ ∂
− + =

∂ ∂ ∂ ∂
 

u(x, 0)  =  −x2   
uy(x, 0)  =  0 
 

(a) Classify the partial differential equation. 
(b) Find the value of  u  at  (x, y)  =  (0, 1). 
 
 
(a) Compare this PDE to the standard form  
 

2 2 2

2 2 0u u uA B C
x x y y

∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂
 

 
 A  =  1 ,    B  =  –3 ,    C  =  2    ⇒   D  =  9  –  4×2  =  1  >  0 
 
 Therefore the PDE is hyperbolic everywhere. 
 

(b) 3 1 1 or 2
2

λ + ±
= =  

⇒    u(x, y)  =  f (y + x)  +  g(y + 2x)   
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