Example 8.02.3

An elastic string of length L is fixed at both ends ($x=0$ and $x=L$). The string is initially in its equilibrium state $[y(x, 0)=0$ for all $x]$ and is released with the initial velocity $\left.\frac{\partial y}{\partial t}\right|_{(x, 0)}=g(x)$. Find the displacement $y(x, t)$ at all locations on the string $(0<x<L)$ and at all subsequent times $(t>0)$.

The boundary value problem for the displacement function $y(x, t)$ is:

$$
\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}} \quad \text { for } 0<x<L \quad \text { and } \quad t>0
$$

Both ends fixed for all time:

$$
y(0, t)=y(L, t)=0 \text { for } t \geq 0
$$

Initial configuration of string: $\quad y(x, 0)=0$ for $0 \leq x \leq L$
String released with initial velocity: $\left.\frac{\partial y}{\partial t}\right|_{(x, 0)}=g(x) \quad$ for $0 \leq x \leq L$
As before, attempt a solution by the method of the separation of variables.
Substitute $y(x, t)=X(x) T(t)$ into the PDE:

$$
\frac{\partial^{2}}{\partial t^{2}}(X(x) T(t))=c^{2} \frac{\partial^{2}}{\partial x^{2}}(X(x) T(t)) \quad \Rightarrow \quad X \frac{d^{2} T}{d t^{2}}=c^{2} \frac{d^{2} X}{d x^{2}} T
$$

Again, each side must be a negative constant.

$$
\Rightarrow \frac{1}{c^{2} T} \frac{d^{2} T}{d t^{2}}=\frac{1}{X} \frac{d^{2} X}{d x^{2}}=-\lambda^{2}
$$

We now have the pair of ODEs

$$
\frac{d^{2} X}{d x^{2}}+\lambda^{2} X=0 \quad \text { and } \quad \frac{d^{2} T}{d t^{2}}+\lambda^{2} c^{2} T=0
$$

The general solutions are

$$
X(x)=A \cos (\lambda x)+B \sin (\lambda x) \text { and } T(t)=C \cos (\lambda c t)+D \sin (\lambda c t)
$$

respectively, where A, B, C and D are arbitrary constants.

Example 8.02.3 (continued)

Consider the boundary conditions:

$$
y(0, t)=X(0) T(t)=0 \quad \forall t \geq 0
$$

For a non-trivial solution, this requires $X(0)=0 \Rightarrow A=0$.

$$
\begin{aligned}
& y(L, t)=X(L) T(t)=0 \quad \forall t \geq 0 \quad \Rightarrow \quad X(L)=0 \\
& \Rightarrow \quad B \sin (\lambda L)=0 \Rightarrow \lambda_{n}=\frac{n \pi}{L}, \quad(n \in \mathbb{Z})
\end{aligned}
$$

We now have a solution only for a discrete set of eigenvalues λ_{n}, with corresponding eigenfunctions

$$
X_{n}(x)=\sin \left(\frac{n \pi x}{L}\right), \quad(n=1,2,3, \ldots)
$$

and

$$
y_{n}(x, t)=X_{n}(x) T_{n}(t)=\sin \left(\frac{n \pi x}{L}\right) T_{n}(t), \quad(n=1,2,3, \ldots)
$$

So far, the solution has been identical to Example 8.02.1.
Consider the initial condition $y(x, 0)=0$:

$$
y(x, 0)=0 \Rightarrow X(x) T(0)=0 \quad \forall x \Rightarrow T(0)=0
$$

The initial value problem for $T(t)$ is now

$$
T^{\prime \prime}+\lambda^{2} c^{2} T=0, \quad T(0)=0, \quad \text { where } \quad \lambda=\frac{n \pi}{L}
$$

the solution to which is

$$
T_{n}(t)=C_{n} \sin \left(\frac{n \pi c t}{L}\right), \quad(n \in \mathbb{N})
$$

Our eigenfunctions for y are now

$$
y_{n}(x, t)=X_{n}(x) T_{n}(t)=C_{n} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{n \pi c t}{L}\right), \quad(n \in \mathbb{N})
$$

Example 8.02.3 (continued)

Differentiate term by term and impose the initial velocity condition:

$$
\left.\frac{\partial y}{\partial t}\right|_{(x, 0)}=\sum_{n=1}^{\infty} C_{n}\left(\frac{n \pi c}{L}\right) \sin \left(\frac{n \pi x}{L}\right)=g(x)
$$

which is just the Fourier sine series expansion for the function $g(x)$.
The coefficients of the expansion are

$$
C_{n} \frac{n \pi c}{L}=\frac{2}{L} \int_{0}^{L} g(u) \sin \left(\frac{n \pi u}{L}\right) d u
$$

which leads to the complete solution

$$
y(x, t)=\frac{2}{\pi c} \sum_{n=1}^{\infty} \frac{1}{n}\left(\int_{0}^{L} g(u) \sin \left(\frac{n \pi u}{L}\right) d u\right) \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{n \pi c t}{L}\right)
$$

This solution is valid for any initial velocity function $g(x)$ that is continuous with a piece-wise continuous derivative on $[0, L]$ with $g(0)=g(L)=0$.

The solutions for Examples 8.02 .1 and 8.02 .3 may be superposed.
Let $y_{1}(x, t)$ be the solution for initial displacement $f(x)$ and zero initial velocity.
Let $y_{2}(x, t)$ be the solution for zero initial displacement and initial velocity $g(x)$.
Then $y(x, t)=y_{1}(x, t)+y_{2}(x, t)$ satisfies the wave equation
(the sum of any two solutions of a linear homogeneous PDE is also a solution), and satisfies the boundary conditions $y(0, t)=y(L, t)=0$:
$y(x, 0)=y_{1}(x, 0)+y_{2}(x, 0)=f(x)+0$,
which satisfies the condition for initial displacement $f(x)$.
$y_{t}(x, 0)=y_{1 t}(x, 0)+y_{2 t}(x, 0)=0+g(x)$,
which satisfies the condition for initial velocity $g(x)$.
Therefore the sum of the two solutions is the complete solution for initial displacement $f(x)$ and initial velocity $g(x)$:

$$
\begin{aligned}
y(x, t) & =\frac{2}{L} \sum_{n=1}^{\infty}\left(\int_{0}^{L} f(u) \sin \left(\frac{n \pi u}{L}\right) d u\right) \sin \left(\frac{n \pi x}{L}\right) \cos \left(\frac{n \pi c t}{L}\right) \\
& +\frac{2}{\pi c} \sum_{n=1}^{\infty} \frac{1}{n}\left(\int_{0}^{L} g(u) \sin \left(\frac{n \pi u}{L}\right) d u\right) \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{n \pi c t}{L}\right)
\end{aligned}
$$

Example 8.02.4

An elastic string of length 1 m is fixed at both ends ($x=0$ and $x=1$). The string is initially in the shape of an arc of a parabola $\left[y(x, 0)=x-x^{2}\right.$ for $\left.0 \leq x \leq 1\right]$ and is released with the initial velocity $\left.\frac{\partial y}{\partial t}\right|_{(x, 0)}=x-x^{2} \quad(0 \leq x \leq 1)$. It is known that the wave speed is $c=5 \mathrm{~m} \mathrm{~s}^{-1}$. Find the displacement $y(x, t)$ at all locations on the string $(0<x<1)$ and at all subsequent times $(t>0)$.

In the formula for the complete solution of the wave equation,

$$
\begin{aligned}
y(x, t) & =\frac{2}{L} \sum_{n=1}^{\infty}\left(\int_{0}^{L} f(u) \sin \left(\frac{n \pi u}{L}\right) d u\right) \sin \left(\frac{n \pi x}{L}\right) \cos \left(\frac{n \pi c t}{L}\right) \\
& +\frac{2}{\pi c} \sum_{n=1}^{\infty} \frac{1}{n}\left(\int_{0}^{L} g(u) \sin \left(\frac{n \pi u}{L}\right) d u\right) \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{n \pi c t}{L}\right)
\end{aligned}
$$

we know that $L=1, c=5$ and $f(x)=g(x)=x-x^{2}$ for $0 \leq x \leq 1$.
Both integrals inside the summations are the same:

$$
\begin{aligned}
& \int_{0}^{1}\left(u-u^{2}\right) \sin \left(\frac{n \pi u}{1}\right) d u= \\
& {\left[\left(\frac{(u-1) u}{n \pi}-\frac{2}{(n \pi)^{3}}\right) \cos n \pi u+\frac{1-2 u}{(n \pi)^{2}} \sin n \pi u\right]_{0}^{1}} \\
& =\left(\left(0-\frac{2}{(n \pi)^{3}}\right)(-1)^{n}+0\right)-\left(\left(0-\frac{2}{(n \pi)^{3}}\right)+0\right)
\end{aligned} \left\lvert\, \begin{array}{cc}
\underline{D} \\
u-u^{2} & \underline{\sin n \pi u} \\
1-2 u & -\frac{\cos n \pi u}{n \pi} \\
-2 & -\frac{\sin n \pi u}{(n \pi)^{2}} \\
=\frac{2}{(n \pi)^{3}}\left(1-(-1)^{n}\right)=\left\{\begin{array}{cc}
0 & (n \text { even)} \\
\frac{4}{(n \pi)^{3}} & (n \text { odd })
\end{array} \quad \text { Let (odd } n\right)=2 k-1
\end{array}\right.
$$

The complete solution is
$y(x, t)=\frac{8}{\pi^{3}} \sum_{k=1}^{\infty} \frac{1}{(2 k-1)^{3}} \sin (2 k-1) \pi x\left(\cos 5(2 k-1) \pi t+\frac{\sin 5(2 k-1) \pi t}{5(2 k-1) \pi}\right)$
A Maple file for this solution is available at "www.engr.mun.ca/~ggeorge/9420/demos/ex8024.mws".

8.03 The Wave Equation - Vibrating Infinite String

Example 8.03.1

An elastic string of infinite length is displaced into the form $y=f(x)$ and is released from rest. Find the displacement $y(x, t)$ at all locations on the string $x \in \mathbb{R}$ and at all subsequent times $(t>0)$.

The boundary value problem for the displacement function $y(x, t)$ is:

$$
\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}} \quad \text { for }-\infty<x<\infty \quad \text { and } \quad t>0
$$

Initial configuration of string: $\quad y(x, 0)=f(x)$ for $x \in \mathbb{R}$

String released from rest:

$$
\left.\frac{\partial y}{\partial t}\right|_{(x, 0)}=0 \quad \text { for } x \in \mathbb{R}
$$

We no longer have the additional boundary conditions of fixed endpoints.
However, it is reasonable to insist upon a bounded solution.

Separation of Variables (or Fourier Method)

Attempt a solution of the form $y(x, t)=X(x) T(t)$
Again we find the linked pair of ordinary differential equations

$$
X^{\prime \prime}+\omega^{2} X=0 \quad \text { and } \quad T^{\prime \prime}+\omega^{2} c^{2} T=0
$$

If $\omega=0$ then $X(x)=a x+b$. However, for a bounded solution, we require $a=0$.
For other values of $\omega, X(x)=a \cos \omega x+b \sin \omega x$, which is bounded for all x and all ω. The $\omega=0$ case is a special case of this solution.

We have a continuum of eigenvalues ω with corresponding eigenfunctions

$$
X_{\omega}(x)=a_{\omega} \cos (\omega x)+b_{\omega} \sin (\omega x)
$$

It then follows that $\quad T_{\omega}(t)=c_{\omega} \cos \omega c t+d_{\omega} \sin \omega c t$

Imposing the initial condition of zero velocity,

$$
\left.\frac{\partial y}{\partial t}\right|_{(x, 0)}=X(x) T^{\prime}(0)=X(x) d_{\omega} \omega c=0 \quad \forall x \in \mathbb{R} \quad \Rightarrow \quad d_{\omega}=0
$$

Example 8.03.1 (continued)

Therefore we have, for any real ω, a solution of the wave equation and the initial velocity condition,

$$
y_{\omega}(x, t)=X_{\omega}(x) T_{\omega}(t)=\left(a_{\omega} \cos (\omega x)+b_{\omega} \sin (\omega x)\right) \cos (\omega c t)
$$

[where c_{ω} has been absorbed into the other arbitrary constants a_{ω} and b_{ω}.]
The superposition of solutions now leads to an integral, not a discrete sum.

$$
y(x, t)=\int_{0}^{\infty} y_{\omega}(x, t) d \omega=\int_{0}^{\infty}\left(a_{\omega} \cos (\omega x)+b_{\omega} \sin (\omega x)\right) \cos (\omega c t) d \omega
$$

Imposing the remaining condition,

$$
y(x, 0)=\int_{0}^{\infty}\left(a_{\omega} \cos (\omega x)+b_{\omega} \sin (\omega x)\right) d \omega=f(x)
$$

But this is just the Fourier integral representation of $f(x)$ on $(-\infty, \infty)$. Therefore a_{ω} and b_{ω} are just the Fourier integral coefficients

$$
a_{\omega}=\frac{1}{\pi} \int_{-\infty}^{\infty} f(u) \cos (\omega u) d u \quad \text { and } \quad b_{\omega}=\frac{1}{\pi} \int_{-\infty}^{\infty} f(u) \sin (\omega u) d u
$$

The complete solution is

$$
\begin{aligned}
& y(x, t)=\int_{0}^{\infty}\left[\left(\frac{1}{\pi} \int_{-\infty}^{\infty} f(u) \cos (\omega u) d u\right) \cos (\omega x)\right. \\
& \left.+\left(\frac{1}{\pi} \int_{-\infty}^{\infty} f(u) \sin (\omega u) d u\right) \sin (\omega x)\right] \cos (\omega c t) d \omega
\end{aligned}
$$

which, after re-iteration (interchanging the order of integration) is

$$
\begin{gathered}
y(x, t)=\frac{1}{\pi} \int_{-\infty}^{\infty} \int_{0}^{\infty}(\cos (\omega u) \cos (\omega x)+\sin (\omega u) \sin (\omega x)) f(u) \cos (\omega c t) d \omega d u \\
\Rightarrow y(x, t)=\frac{1}{\pi} \int_{-\infty}^{\infty} f(u) \int_{0}^{\infty} \cos (\omega(u-x)) \cos (\omega c t) d \omega d u \\
=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(u) \int_{0}^{\infty}(\cos (\omega(u-x+c t))+\cos (\omega(u-x-c t))) d \omega d u \\
=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(u)\left[\frac{\sin (\omega(u-x+c t))}{u-x+c t}+\frac{\sin (\omega(u-x-c t))}{u-x-c t}\right]_{\omega=0}^{\omega=\infty} d u
\end{gathered}
$$

8.04 d'Alembert Solution

One form of the solution to Example 8.03.1,
$y(x, t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(u)\left[\frac{\sin (\omega(u-x+c t))}{u-x+c t}+\frac{\sin (\omega(u-x-c t))}{u-x-c t}\right]_{\omega=0}^{\omega=\infty} d u$
suggests that, in general, one might seek solutions to the wave equation of the form

$$
y(x, t)=\frac{f(x+c t)+f(x-c t)}{2}
$$

Let $r=x+c t$ and $s=x-c t$, then $y(r, s)=\frac{f(r)+f(s)}{2}$ and
$\frac{\partial y}{\partial x}=\frac{\partial y}{\partial r} \frac{\partial r}{\partial x}+\frac{\partial y}{\partial s} \frac{\partial s}{\partial x}=\frac{1}{2}\left(\left(f^{\prime}(r)+0\right) \times 1+\left(0+f^{\prime}(s)\right) \times 1\right)$,

$\frac{\partial^{2} y}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial y}{\partial x}\right)=\frac{\partial}{\partial r}\left(\frac{\partial y}{\partial x}\right) \frac{\partial r}{\partial x}+\frac{\partial}{\partial s}\left(\frac{\partial y}{\partial x}\right) \frac{\partial s}{\partial x}=\frac{1}{2}\left(f^{\prime \prime}(r) \times 1+f^{\prime \prime}(s) \times 1\right)$,
$\frac{\partial y}{\partial t}=\frac{\partial y}{\partial r} \frac{\partial r}{\partial t}+\frac{\partial y}{\partial s} \frac{\partial s}{\partial t}=\frac{1}{2}\left(\left(f^{\prime}(r)+0\right) \times c+\left(0+f^{\prime}(s)\right) \times(-c)\right)$,
$\frac{\partial^{2} y}{\partial t^{2}}=\frac{\partial}{\partial r}\left(\frac{\partial y}{\partial t}\right) \frac{\partial r}{\partial t}+\frac{\partial}{\partial s}\left(\frac{\partial y}{\partial t}\right) \frac{\partial s}{\partial t}=\frac{1}{2}\left(c f^{\prime \prime}(r) \times c-c f^{\prime \prime}(s) \times(-c)\right)$,
$\Rightarrow \frac{\partial^{2} y}{\partial x^{2}}-\frac{1}{c^{2}} \frac{\partial^{2} y}{\partial t^{2}}=\frac{1}{2}\left(f^{\prime \prime}(r)+f^{\prime \prime}(s)\right)-\frac{1}{2 c^{2}}\left(c^{2} f^{\prime \prime}(r)+c^{2} f^{\prime \prime}(s)\right)=0$,
Therefore $y(x, t)=\frac{f(x+c t)+f(x-c t)}{2}$ is a solution to the wave equation for all twice differentiable functions $f(u)$. This is part of the d'Alembert solution.

This d'Alembert solution satisfies the initial displacement condition:
$y(x, 0)=\frac{f(x+0)+f(x-0)}{2}=f(x)$
Also $\left.\frac{\partial}{\partial t} y(x, t)\right|_{t=0}=\left.\frac{c f^{\prime}(x+c t)-c f^{\prime}(x-c t)}{2}\right|_{t=0}=\frac{c f^{\prime}(x)-c f^{\prime}(x)}{2}=0$
The d'Alembert solution therefore satisfies both initial conditions.

A more general d'Alembert solution to the wave equation for an infinitely long string is

$$
y(x, t)=\frac{f(x+c t)+f(x-c t)}{2}+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(u) d u
$$

This satisfies the wave equation

$$
\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}} \quad \text { for }-\infty<x<\infty \quad \text { and } \quad t>0
$$

and
Initial configuration of string: $\quad y(x, 0)=f(x)$ for $x \in \mathbb{R}$
and
Initial speed of string:

$$
\left.\frac{\partial y}{\partial t}\right|_{(x, 0)}=g(x) \quad \text { for } x \in \mathbb{R}
$$

for any twice differentiable functions $f(x)$ and $g(x)$.
Physically, this represents two identical waves, moving with speed c in opposite directions along the string.

Proof that $y(x, t)=\frac{1}{2 c} \int_{x-c t}^{x+c t} g(u) d u$ satisfies both initial conditions:

$$
y(x, t)=\frac{1}{2 c} \int_{x-c t}^{x+c t} g(u) d u \Rightarrow y(x, 0)=\frac{1}{2 c} \int_{x}^{x} g(u) d u=0
$$

Using a Leibnitz differentiation of the integral:

$$
\begin{aligned}
& \frac{\partial y}{\partial t}=\frac{1}{2 c}\left(g(x+c t) \cdot \frac{\partial}{\partial t}(x+c t)-g(x-c t) \cdot \frac{\partial}{\partial t}(x-c t)+\int_{x-c t}^{x+c t} \frac{\partial}{\partial t} g(u) d u\right) \\
&=\frac{1}{2 c}(c g(x+c t)+c g(x-c t)+0)=\frac{g(x+c t)+g(x-c t)}{2} \\
&\left.\Rightarrow \frac{\partial y}{\partial t}\right|_{t=0}=\frac{g(x+0)+g(x-0)}{2}=g(x)
\end{aligned}
$$

Example 8.04.1

An elastic string of infinite length is displaced into the form $y=\cos \pi x / 2$ on $[-1,1]$ only (and $y=0$ elsewhere) and is released from rest. Find the displacement $y(x, t)$ at all locations on the string $x \in \mathbb{R}$ and at all subsequent times ($t>0$).

For this solution to the wave equation we have initial conditions

$$
y(x, 0)=f(x)=\left\{\begin{array}{cc}
\cos \left(\frac{\pi x}{2}\right) & (-1 \leq x \leq 1) \\
0 & (\text { otherwise })
\end{array}\right.
$$

and

$$
\frac{\partial y}{\partial t}(x, 0)=g(x)=0
$$

The d'Alembert solution is
$y(x, t)=\frac{f(x+c t)+f(x-c t)}{2}+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(u) d u=\frac{f(x+c t)+f(x-c t)}{2}+0$
where $f(x+c t)=\left\{\begin{array}{cc}\cos \left(\frac{\pi(x+c t)}{2}\right) & (-1-c t \leq x \leq 1-c t) \\ 0 & \text { (otherwise) }\end{array}\right.$
and $\quad f(x-c t)=\left\{\begin{array}{cc}\cos \left(\frac{\pi(x-c t)}{2}\right) & (-1+c t \leq x \leq 1+c t) \\ 0 & \text { (otherwise) }\end{array}\right.$
We therefore obtain two waves, each of the form of a single half-period of a cosine function, moving apart from a superposed state at $x=0$ at speed c in opposite directions.

See the web page "www.engr.mun.ca/~ggeorge/9420/demos/ex8041.html" for an animation of this solution.

Example 8.04.1 (continued)

Some snapshots of the solution are shown here:

A more general case of a d'Alembert solution arises for the homogeneous PDE with constant coefficients

$$
A \frac{\partial^{2} u}{\partial x^{2}}+B \frac{\partial^{2} u}{\partial x \partial y}+C \frac{\partial^{2} u}{\partial y^{2}}=0
$$

The characteristic (or auxiliary) equation for this PDE is

$$
A \lambda^{2}+B \lambda+C=0
$$

This leads to the complementary function (which is also the general solution for this homogeneous PDE)

$$
u(x, y)=f_{1}\left(y+\lambda_{1} x\right)+f_{2}\left(y+\lambda_{2} x\right)
$$

where

$$
\lambda_{1}=\frac{-B-\sqrt{D}}{2 A} \quad \text { and } \quad \lambda_{2}=\frac{-B+\sqrt{D}}{2 A}
$$

and $\quad D=B^{2}-4 A C$
and f_{1}, f_{2} are arbitrary twice-differentiable functions of their arguments.
λ_{1} and λ_{2} are the roots (or eigenvalues) of the characteristic equation.
In the event of equal roots, the solution changes to

$$
u(x, y)=f_{1}(y+\lambda x)+h(x, y) f_{2}(y+\lambda x)
$$

where $h(x, y)$ is any non-trivial linear function of x and/or y (except $y+\lambda x$).
The wave equation is a special case with $y=t, A=1, B=0, C=-1 / c^{2}$ and $\lambda= \pm 1 / c$.

Example 8.04.2

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial x^{2}}-3 \frac{\partial^{2} u}{\partial x \partial y}+2 \frac{\partial^{2} u}{\partial y^{2}}=0 \\
& u(x, 0)=-x^{2} \\
& u_{y}(x, 0)=0
\end{aligned}
$$

(a) Classify the partial differential equation.
(b) Find the value of u at $(x, y)=(0,1)$.
(a) Compare this PDE to the standard form

$$
A \frac{\partial^{2} u}{\partial x^{2}}+B \frac{\partial^{2} u}{\partial x \partial y}+C \frac{\partial^{2} u}{\partial y^{2}}=0
$$

$A=1, \quad B=-3, \quad C=2 \Rightarrow D=9-4 \times 2=1>0$
Therefore the PDE is hyperbolic everywhere.
(b) $\lambda=\frac{+3 \pm \sqrt{1}}{2}=1$ or 2

$$
\Rightarrow u(x, y)=f(y+x)+g(y+2 x)
$$

