Example 8.04.4

Find the complete solution to

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial x^{2}}+2 \frac{\partial^{2} u}{\partial x \partial y}+\frac{\partial^{2} u}{\partial y^{2}}=0, \\
& u=0 \text { on } x=0 \\
& u=x^{2} \text { on } y=1
\end{aligned}
$$

$A=1, \quad B=2, \quad C=1 \Rightarrow D=4-4 \times 1=0$
Therefore the PDE is parabolic everywhere.

$$
\lambda=\frac{-2 \pm \sqrt{0}}{2}=-1 \text { or }-1
$$

The complementary function (and general solution) is

$$
u(x, y)=f(y-x)+h(x, y) g(y-x)
$$

where $h(x, y)$ is any convenient non-trivial linear function of (x, y) except a multiple of $(y-x)$. Choosing, arbitrarily, $h(x, y)=x$,

$$
u(x, y)=f(y-x)+x g(y-x)
$$

Imposing the boundary conditions:
$u(0, y)=0 \Rightarrow f(y)+0=0$
Therefore the function f is identically zero, for any argument including $(y-x)$.
We now have $u(x, y)=x g(y-x)$.
$u(x, 1)=x^{2} \Rightarrow x g(1-x)=x^{2} \Rightarrow g(1-x)=x \Rightarrow g(x)=1-x$
Therefore

$$
u(x, y)=x g(y-x)=x(1-(y-x))
$$

The complete solution is

$$
u(x, y)=x(x-y+1)
$$

Example 8.04.4 - Alternative Treatment of the Complementary Function

Find the complete solution to

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial x^{2}}+2 \frac{\partial^{2} u}{\partial x \partial y}+\frac{\partial^{2} u}{\partial y^{2}}=0, \\
& u=0 \text { on } x=0 \\
& u=x^{2} \text { on } y=1
\end{aligned}
$$

$$
\begin{aligned}
A & =1, \quad B=2, \quad C=1 \Rightarrow D=4-4 \times 1=0 \\
\lambda & =\frac{-2 \pm \sqrt{0}}{2}=-1 \text { or }-1
\end{aligned}
$$

The complementary function (and general solution) is

$$
u(x, y)=f(y-x)+h(x, y) g(y-x)
$$

where $h(x, y)$ is any convenient non-trivial linear function of (x, y) except a multiple of $(y-x)$. The most general choice possible is $h(x, y)=a x+b y$, with the restriction $a \neq \lambda b$.

$$
\begin{align*}
u(x, y) & =f(y-x)+(a x+b y) \cdot g(y-x) \\
\Rightarrow \quad u(0, y) & =f(y)+b y \cdot g(y)=0 \quad \Rightarrow \quad f(y)=-b y \cdot g(y) \tag{A}
\end{align*}
$$

[note: choosing $b=0 \rightarrow f(y)=0$, as happened on the previous page] and

$$
u(x, 1)=f(1-x)+(a x+b) \cdot g(1-x)=x^{2}
$$

Using (A),

$$
\begin{align*}
& u(x, 1)=-b(1-x) \cdot g(1-x)+(a x+b) \cdot g(1-x)=x^{2} \\
\Rightarrow & (-b+b x+a x+b) \cdot g(1-x)=x^{2} \quad \Rightarrow(a+b) x \cdot g(1-x)=x^{2} \\
\Rightarrow & \left.g(1-x)=\frac{x}{a+b} \text { (note that the restriction on } h(x, y) \text { ensures that } a+b \neq 0\right) \\
\Rightarrow & g(y)=\frac{1-y}{a+b} \tag{B}
\end{align*}
$$

(A) $\Rightarrow f(y)=-b y \cdot \frac{1-y}{a+b}$

The complete solution becomes

$$
\begin{gathered}
u(x, y)=-b(y-x) \cdot \frac{1-(y-x)}{a+b}+(a x+b y) \frac{1-(y-x)}{a+b} \\
=(-b y+b x+a x+b y) \frac{1-(y-x)}{a+b}=(a+b) x \frac{x-y+1}{a+b} \Rightarrow \\
u(x, y)=x(x-y+1)
\end{gathered}
$$

Example 8.04.4 Extension (continued)
It is easy to confirm that this solution is correct:
$u(x, y)=x(x-y+1) \Rightarrow$
$u(0, y)=0(0-y+1)=0 \quad \forall y$
and
$u(x, 1)=x(x-1+1)=x^{2} \quad \forall x$
and
$u(x, y)=x^{2}-x y+x \Rightarrow \frac{\partial u}{\partial x}=2 x-y$ and $\frac{\partial u}{\partial y}=-x$
$\Rightarrow \frac{\partial^{2} u}{\partial x^{2}}=2, \quad \frac{\partial^{2} u}{\partial x \partial y}=-1 \quad$ and $\quad \frac{\partial^{2} u}{\partial y^{2}}=0$
$\Rightarrow \frac{\partial^{2} u}{\partial x^{2}}+2 \frac{\partial^{2} u}{\partial x \partial y}+\frac{\partial^{2} u}{\partial y^{2}}=2-2+0=0 \quad \forall(x, y)$

Two-dimensional Laplace Equation

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

$A=C=1, \quad B=0 \Rightarrow D=0-4<0$
This PDE is elliptic everywhere.
$\lambda=\frac{0 \pm \sqrt{-4}}{2}= \pm j$
The general solution is

$$
u(x, y)=f(y-j x)+g(y+j x)
$$

where f and g are any twice-differentiable functions.

A function $f(x, y)$ is harmonic if and only if $\nabla^{2} f=0$ everywhere inside a domain Ω.

Example 8.04.5

Is $u=e^{x} \sin y$ harmonic on \mathbb{R}^{2} ?

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=e^{x} \sin y \text { and } \frac{\partial u}{\partial y}=e^{x} \cos y \\
& \Rightarrow \quad \frac{\partial^{2} u}{\partial x^{2}}=e^{x} \sin y \quad \text { and } \quad \frac{\partial^{2} u}{\partial y^{2}}=-e^{x} \sin y \\
& \Rightarrow \nabla^{2} u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=e^{x} \sin y-e^{x} \sin y=0 \quad \forall(x, y)
\end{aligned}
$$

Therefore yes, $u=e^{x} \sin y$ is harmonic on \mathbb{R}^{2}.

Example 8.04.6

Find the complete solution $u(x, y)$ to the partial differential equation $\nabla^{2} u=0$, given the additional information

$$
u(0, y)=y^{3} \quad \text { and }\left.\quad \frac{\partial u}{\partial x}\right|_{x=0}=0
$$

The PDE is

$$
\nabla^{2} u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

(which means that the solution $u(x, y)$ is an harmonic function).

$$
\Rightarrow \quad A=C=1, \quad B=0 \Rightarrow D=B^{2}-4 A C=-4<0
$$

The PDE is elliptic everywhere.
A.E.: $\quad \lambda^{2}+1=0 \quad \Rightarrow \quad \lambda= \pm j$
C.F.: $\quad u_{\mathrm{C}}(x, y)=f(y-j x)+g(y+j x)$

The PDE is homogeneous \Rightarrow
P.S.: $\quad u_{\mathrm{P}}(x, y)=0$
G.S.: $\quad u(x, y)=f(y-j x)+g(y+j x)$
$\Rightarrow u_{x}(x, y)=-j f^{\prime}(y-j x)+j g^{\prime}(y+j x)$
Using the additional information,
$u(0, y)=f(y)+g(y)=y^{3} \quad \Rightarrow g(y)=y^{3}-f(y) \Rightarrow g^{\prime}(y)=3 y^{2}-f^{\prime}(y)$
and
$u_{x}(0, y)=0=-j f^{\prime}(y)+j g^{\prime}(y)=j\left(-f^{\prime}(y)+3 y^{2}-f^{\prime}(y)\right)$
$\Rightarrow 2 f^{\prime}(y)=3 y^{2} \Rightarrow 2 f(y)=y^{3} \Rightarrow f(y)=\frac{1}{2} y^{3}$
$\Rightarrow g(y)=y^{3}-\frac{1}{2} y^{3}=\frac{1}{2} y^{3}$
Therefore the complete solution is

$$
\begin{aligned}
& u(x, y)=\frac{1}{2}(y-j x)^{3}+\frac{1}{2}(y+j x)^{3} \\
& =\frac{1}{2}\left(y^{3}-3(j x) y^{2}+3(j x)^{2} y-(j x)^{3}+y^{3}+3(j x) y^{2}+3(j x)^{2} y+(j x)^{3}\right) \\
& =y^{3}+3 j^{2} x^{2} y \Rightarrow \\
& \quad u(x, y)=y^{3}-3 x^{2} y
\end{aligned}
$$

Note that the solution is completely real, even though the eigenvalues are not real.

8.05 The Maximum-Minimum Principle

Let Ω be some finite domain on which a function $u(x, y)$ and its second derivatives are defined. Let $\bar{\Omega}$ be the union of the domain with its boundary.
Let m and M be the minimum and maximum values respectively of u on the boundary of the domain.

If $\nabla^{2} u \geq 0$ in Ω, then u is subharmonic and

$$
u(\overrightarrow{\mathbf{r}})<M \quad \text { or } \quad u(\overrightarrow{\mathbf{r}}) \equiv M \quad \forall \overrightarrow{\mathbf{r}} \text { in } \Omega
$$

If $\nabla^{2} u \leq 0$ in Ω, then u is superharmonic and

$$
u(\overrightarrow{\mathbf{r}})>m \quad \text { or } \quad u(\overrightarrow{\mathbf{r}}) \equiv m \quad \forall \overrightarrow{\mathbf{r}} \text { in } \Omega
$$

If $\nabla^{2} u=0$ in Ω, then u is harmonic (both subharmonic and superharmonic) and u is either constant on $\bar{\Omega}$ or $m<u<M$ everywhere on Ω.

Example 8.05.1

$\nabla^{2} u=0$ in $\Omega: x^{2}+y^{2}<1$ and $u(x, y)=1$ on $C: x^{2}+y^{2}=1$.
Find $u(x, y)$ on Ω.
u is harmonic on $\Omega \Rightarrow \min _{C}(u) \leq\binom{ u(x, y)}{$ on $\Omega} \leq \max _{C}(u)$

But $\min _{C}(u)=\max _{C}(u)=1$
Therefore $\boldsymbol{u}(\boldsymbol{x}, \boldsymbol{y})=1$ everywhere in Ω.

Example 8.05.2

$\nabla^{2} u=0$ in the square domain $\Omega:-2<x<+2,-2<y<+2$.
On the boundary C, on the left and right edges $(x= \pm 2), u(x, y)=4-y^{2}$,
while on the top and bottom edges $(y= \pm 2), u(x, y)=x^{2}-4$.
Find bounds on the value of $u(x, y)$ inside the domain Ω.

For $-2 \leq y \leq+2,0 \leq 4-y^{2} \leq 4$.
For $-2 \leq x \leq+2,-4 \leq x^{2}-4 \leq 0$.
Therefore, on the boundary C of the domain $\Omega,-4 \leq u(x, y) \leq+4$ so that $m=-4$ and $M=+4$.
$u(x, y)$ is harmonic (because $\nabla^{2} u=0$).
Therefore, everywhere in Ω,

$$
-4<u(x, y)<+4
$$

Note:
$u(x, y)=x^{2}-y^{2}$ is consistent with the boundary condition and

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=2 x-0, \quad \frac{\partial u}{\partial y}=0-2 y \Rightarrow \frac{\partial^{2} u}{\partial x^{2}}=2, \quad \frac{\partial^{2} u}{\partial y^{2}}=-2=-\frac{\partial^{2} u}{\partial x^{2}} \\
& \Rightarrow \nabla^{2} u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
\end{aligned}
$$

Contours of constant values of u are hyperbolas.
A contour map illustrates that $-4<u(x, y)<+4$ within the domain is indeed true.

8.06 The Heat Equation

For a material of constant density ρ, constant specific heat μ and constant thermal conductivity K, the partial differential equation governing the temperature u at any location (x, y, z) and any time t is

$$
\frac{\partial u}{\partial t}=k \nabla^{2} u, \quad \text { where } \quad k=\frac{K}{\mu \rho}
$$

Example 8.06.1

Heat is conducted along a thin homogeneous bar extending from $x=0$ to $x=L$. There is no heat loss from the sides of the bar. The two ends of the bar are maintained at temperatures T_{1} (at $x=0$) and T_{2} (at $x=L$). The initial temperature throughout the bar at the cross-section x is $f(x)$.

Find the temperature at any point in the bar at any subsequent time.

The partial differential equation governing the temperature $u(x, t)$ in the bar is

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}
$$

together with the boundary conditions

$$
u(0, t)=T_{1} \quad \text { and } \quad u(L, t)=T_{2}
$$

and the initial condition
$u(x, 0)=f(x)$
[Note that if an end of the bar is insulated, instead of being maintained at a constant temperature, then the boundary condition changes to $\frac{\partial u}{\partial x}(0, t)=0$ or $\frac{\partial u}{\partial x}(L, t)=0$.]

Attempt a solution by the method of separation of variables.

$$
\begin{aligned}
u(x, t)=X(x) T(t) \\
\Rightarrow \quad X T^{\prime}=k X^{\prime \prime} T \quad \Rightarrow \quad \frac{T^{\prime}}{T}=k \frac{X^{\prime \prime}}{X}=c
\end{aligned}
$$

Again, when a function of t only equals a function of x only, both functions must equal the same absolute constant. Unfortunately, the two boundary conditions cannot both be satisfied unless $T_{1}=T_{2}=0$. Therefore we need to treat this more general case as a perturbation of the simpler ($T_{1}=T_{2}=0$) case.

Example 8.06.1 (continued)

Let $u(x, t)=v(x, t)+g(x)$
Substitute this into the PDE:

$$
\frac{\partial}{\partial t}(v(x, t)+g(x))=k \frac{\partial^{2}}{\partial x^{2}}(v(x, t)+g(x)) \Rightarrow \frac{\partial v}{\partial t}=k\left(\frac{\partial^{2} v}{\partial x^{2}}+g^{\prime \prime}(x)\right)
$$

This is the standard heat PDE for v if we choose g such that $g^{\prime \prime}(x)=0$.
$g(x)$ must therefore be a linear function of x.
We want the perturbation function $g(x)$ to be such that

$$
u(0, t)=T_{1} \quad \text { and } \quad u(L, t)=T_{2}
$$

and

$$
v(0, t)=v(L, t)=0
$$

Therefore $g(x)$ must be the linear function for which $g(0)=T_{1}$ and $g(L)=T_{2}$.
It follows that

$$
g(x)=\left(\frac{T_{2}-T_{1}}{L}\right) x+T_{1}
$$

and we now have the simpler problem

$$
\frac{\partial v}{\partial t}=k \frac{\partial^{2} v}{\partial x^{2}}
$$

together with the boundary conditions

$$
v(0, t)=v(L, t)=0
$$

and the initial condition

$$
v(x, 0)=f(x)-g(x)
$$

Now try separation of variables on $v(x, t)$:
$v(x, t)=X(x) T(t)$
$\Rightarrow \quad X T^{\prime}=k X^{\prime \prime} T \quad \Rightarrow \quad \frac{1}{k} \frac{T^{\prime}}{T}=\frac{X^{\prime \prime}}{X}=c$
But $v(0, t)=v(L, t)=0 \Rightarrow X(0)=X(L)=0$
This requires c to be a negative constant, say $-\lambda^{2}$.
The solution is very similar to that for the wave equation on a finite string with fixed ends (section 8.02). The eigenvalues are $\lambda=\frac{n \pi}{L}$ and the corresponding eigenfunctions are any non-zero constant multiples of

$$
X_{n}(x)=\sin \left(\frac{n \pi x}{L}\right)
$$

Example 8.06.1 (continued)

The ODE for $T(t)$ becomes

$$
T^{\prime}+\left(\frac{n \pi}{L}\right)^{2} k T=0
$$

whose general solution is

$$
T_{n}(t)=c_{n} e^{-n^{2} \pi^{2} k t / L^{2}}
$$

Therefore

$$
v_{n}(x, t)=X_{n}(x) T_{n}(t)=c_{n} \sin \left(\frac{n \pi x}{L}\right) \exp \left(-\frac{n^{2} \pi^{2} k t}{L^{2}}\right)
$$

If the initial temperature distribution $f(x)-g(x)$ is a simple multiple of $\sin \left(\frac{n \pi x}{L}\right)$ for some integer n, then the solution for v is just $v(x, t)=c_{n} \sin \left(\frac{n \pi x}{L}\right) \exp \left(-\frac{n^{2} \pi^{2} k t}{L^{2}}\right)$.
Otherwise, we must attempt a superposition of solutions.

$$
v(x, t)=\sum_{n=1}^{\infty} c_{n} \sin \left(\frac{n \pi x}{L}\right) \exp \left(-\frac{n^{2} \pi^{2} k t}{L^{2}}\right)
$$

such that $v(x, 0)=\sum_{n=1}^{\infty} c_{n} \sin \left(\frac{n \pi x}{L}\right)=f(x)-g(x)$.
The Fourier sine series coefficients are $\quad c_{n}=\frac{2}{L} \int_{0}^{L}(f(z)-g(z)) \sin \left(\frac{n \pi z}{L}\right) d z$
so that the complete solution for $v(x, t)$ is
$v(x, t)=\frac{2}{L} \sum_{n=1}^{\infty}\left(\int_{0}^{L}\left(f(z)-\frac{T_{2}-T_{1}}{L} z-T_{1}\right) \sin \left(\frac{n \pi z}{L}\right) d z\right) \sin \left(\frac{n \pi x}{L}\right) \exp \left(-\frac{n^{2} \pi^{2} k t}{L^{2}}\right)$
and the complete solution for $u(x, t)$ is

$$
u(x, t)=v(x, t)+\left(\frac{T_{2}-T_{1}}{L}\right) x+T_{1}
$$

Note how this solution can be partitioned into a transient part $v(x, t)$ (which decays to zero as t increases) and a steady-state part $g(x)$ which is the limiting value that the temperature distribution approaches.

Example 8.06.1 (continued)

As a specific example, let $k=9, T_{1}=100, T_{2}=200, L=2$ and
$f(x)=145 x^{2}-240 x+100$, (for which $f(0)=100, f(2)=200$ and $f(x)>0 \forall x$).
Then $g(x)=\frac{200-100}{2} x+100=50 x+100$
The Fourier sine series coefficients are

$$
\begin{aligned}
& c_{n}=\int_{0}^{2}\left(\left(145 z^{2}-240 z+100\right)-(50 z+100)\right) \sin \left(\frac{n \pi z}{2}\right) d z \\
& \Rightarrow c_{n}=145 \int_{0}^{2}\left(z^{2}-2 z\right) \sin \left(\frac{n \pi z}{2}\right) d z
\end{aligned}
$$

After an integration by parts (details omitted here),

$$
\begin{aligned}
& \Rightarrow \quad c_{n}=145\left[\left(\left(-z^{2}+2 z\right) \frac{2}{n \pi}+\frac{16}{(n \pi)^{3}}\right) \cos \left(\frac{n \pi z}{2}\right)+\frac{8(z-1)}{(n \pi)^{2}} \sin \left(\frac{n \pi z}{2}\right)\right]_{z=0}^{z=2} \\
& \Rightarrow \quad c_{n}=\frac{2320}{(n \pi)^{3}}\left((-1)^{n}-1\right)
\end{aligned}
$$

The complete solution is

$$
u(x, t)=50 x+100-\frac{2320}{\pi^{3}} \sum_{n=1}^{\infty}\left(\frac{1-(-1)^{n}}{n^{3}}\right) \sin \left(\frac{n \pi x}{2}\right) \exp \left(-\frac{9 n^{2} \pi^{2} t}{4}\right)
$$

Some snapshots of the temperature distribution (from the tenth partial sum) from the Maple file at "www.engr.mun.ca/~ggeorge/9420/demos/ex8061.mws" are shown on the next page.

Example 8.06.1 (continued)

The steady state distribution is nearly attained in much less than a second!

END OF CHAPTER 8
END OF ENGI. 9420!

