ENGI 9420 Engineering Analysis Assignment 1 Solutions

2012 Fall
[First order ODEs, Sections 1.01-1.05]
Note: In this assignment, do not use Laplace transform methods at all.

1. For the initial value problem

$$
\frac{d y}{d x}+2 y=2, \quad y(0)=4
$$

(a) Classify the ODE (as one or more of separable, exact, linear, or Bernoulli).

This ODE is not exact: $(2 y-2) d x+d y=0$
$P=2 y-2 \Rightarrow \frac{\partial P}{\partial y}=2, \quad Q=1 \Rightarrow \frac{\partial Q}{\partial x}=0 \neq \frac{\partial P}{\partial y}$
However, [from part (b) below], the ODE is

both separable and linear

[All homogeneous first order linear ODEs are special cases of Bernoulli ODEs with $n=0$.]
(b) Obtain the complete solution by two different methods.

Method of Separation of Variables:

$$
\begin{aligned}
& \frac{d y}{d x}=2-2 y \Rightarrow d y=2(1-y) d x \Rightarrow \frac{1}{2} \int \frac{d y}{1-y}=\int d x \\
& \Rightarrow-\frac{1}{2} \ln |1-y|=x+c_{1} \Rightarrow \ln |1-y|=-2 x+c_{2} \\
& \Rightarrow 1-y= \pm e^{-2 x+c_{2}}=c_{3} e^{-2 x} \Rightarrow y(x)=1-c_{3} e^{-2 x}
\end{aligned}
$$

where c_{1}, c_{2} and c_{3} are all arbitrary constants.

1 (b) (continued)
Substitute the initial condition into this general solution:
$y(0)=4 \Rightarrow 4=1-c_{3} \Rightarrow c_{3}=-3$
Therefore the complete solution is

$$
y(x)=1+3 e^{-2 x}
$$

AND

Linear Method:

$$
\begin{aligned}
& \frac{d y}{d x}+\underset{\uparrow}{2} y=\underset{\uparrow}{2} \\
& P=\int_{R}^{R} P d x=\int 2 d x=2 x \Rightarrow e^{h}=e^{2 x} \\
& \Rightarrow \quad \int^{h} e^{h} R d x=\int 2 e^{2 x} d x=e^{2 x}
\end{aligned}
$$

Therefore the general solution of the ODE is

$$
y=e^{-h}\left(\int e^{h} R d x+C\right)=e^{-2 x}\left(e^{2 x}+C\right)=1+C e^{-2 x}
$$

Substitute the initial condition into this general solution:

$$
y(0)=4 \Rightarrow 4=1+C \Rightarrow C=3
$$

Therefore the complete solution is

$$
y(x)=1+3 e^{-2 x}
$$

(c) Verify that your solution does satisfy the initial value problem.

$$
\begin{aligned}
& y(x)=1+3 e^{-2 x} \Rightarrow y^{\prime}(x)=0-6 e^{-2 x} \\
& \Rightarrow y^{\prime}+2 y=-6 e^{-2 x}+\left(2+6 e^{-2 x}\right)=2 \\
& \text { and } y(0)=1+3=4
\end{aligned}
$$

2. For the initial value problem

$$
\frac{d y}{d x}+2 y=2 y^{3}, \quad y(0)=4
$$

(a) Classify the ODE (as one or more of separable, exact, linear, or Bernoulli).

Rewrite the ODE in standard form in order to test for exactness:

$$
\begin{array}{ll}
\frac{d y}{d x}+2 y-2 y^{3}=0 & \Rightarrow \underbrace{2 y\left(1-y^{2}\right)}_{P} d x+\underbrace{1}_{Q} d y=0 \\
\Rightarrow \frac{\partial P}{\partial y}=2\left(1-3 y^{2}\right), \quad \frac{\partial Q}{\partial x}=0 \neq \frac{\partial P}{\partial y}
\end{array}
$$

Therefore the ODE is not exact.
In the original form of the ODE, we can quickly identify
$P=R=2, n=3 \Rightarrow$ the ODE is Bernoulli, but not linear.
$n>0 \Rightarrow$ the singular solution $y \equiv 0$ also exists.
P and R are both constants \Rightarrow the ODE is also separable.
The ODE is therefore

both separable and Bernoulli

(b) Obtain the complete solution.

Either one of the following methods may be used:
Method of Separation of Variables:

$$
\frac{d y}{d x}=2 y^{3}-2 y \quad \Rightarrow \quad \int \frac{d y}{2 y\left(y^{2}-1\right)}=\int d x
$$

unless $y \equiv 0$ or $y \equiv-1$ or $y \equiv+1$
(all of which may be singular solutions to the ODE).
Using the cover-up rule for partial fractions,

$$
\begin{aligned}
& \frac{1}{y(y-1)(y+1)}=\frac{\left(\frac{1}{\nmid x-1 \times 1}\right)}{y}+\frac{\left(\frac{1}{1 \times 1 \times 2}\right)}{y-1}+\frac{\left(\frac{1}{-1 \times-2 \times \nmid}\right)}{y+1} \\
& \Rightarrow \int \frac{d y}{2 y(y-1)(y+1)}=-\frac{1}{2} \int \frac{d y}{y}+\frac{1}{4} \int \frac{d y}{y-1}+\frac{1}{4} \int \frac{d y}{y+1}=\int d x
\end{aligned}
$$

2 (b) (continued)

$$
\begin{aligned}
& \Rightarrow-\frac{1}{2} \ln |y|+\frac{1}{4} \ln |y-1|+\frac{1}{4} \ln |y+1|=x+c_{1} \\
& \Rightarrow \frac{1}{4} \ln \left|\frac{y^{2}-1}{y^{2}}\right|=x+c_{1} \quad \Rightarrow \frac{y^{2}-1}{y^{2}}= \pm e^{4 x+c_{2}}=c_{3} e^{4 x} \\
& \Rightarrow y^{2}-1=c_{3} y^{2} e^{4 x} \quad \Rightarrow y^{2}\left(1-c_{3} e^{4 x}\right)=1 \\
& \Rightarrow y^{2}=\frac{1}{1-c_{3} e^{4 x}} \quad \Rightarrow y(x)= \pm \sqrt{\frac{1}{1-c_{3} e^{4 x}}}
\end{aligned}
$$

But the initial condition is positive, so the positive square root is required.
Also note that $y(0)=4$ is incompatible with any of the three singular solutions.
Substitute the initial condition into the general solution:

$$
y(0)=4 \Rightarrow 4=+\sqrt{\frac{1}{1-c_{3}}} \Rightarrow 1-c_{3}=\frac{1}{16} \Rightarrow c_{3}=\frac{15}{16}
$$

Therefore the complete solution to the ODE is

$$
y(x)=+\sqrt{\frac{1}{1-\frac{15}{16} e^{4 x}}}
$$

OR

Bernoulli Method:

Let $\quad w=\frac{y^{1-n}}{1-n}=\frac{y^{1-3}}{1-3}=-\frac{1}{2 y^{2}}$,
then the Bernoulli ODE for y transforms into the linear ODE for w :

$$
\begin{aligned}
& \frac{d w}{d x}+(1-n) P w=R \Rightarrow \frac{d w}{d x}-4 w=2 \\
& h=\int-4 d x \Rightarrow e^{h}=e^{-4 x} \\
& \Rightarrow \int e^{h} R d x=\int 2 e^{-4 x} d x=-\frac{e^{-4 x}}{2} \\
& \Rightarrow-\frac{1}{2 y^{2}}=w=e^{-h}\left(\int e^{h} R d x+C\right)=e^{4 x}\left(C-\frac{e^{-4 x}}{2}\right) \\
& \Rightarrow-\frac{1}{\not 2 y^{2}}=\frac{2 C e^{4 x}-1}{\not 2} \Rightarrow y^{2}=\frac{1}{1+A e^{4 x}}
\end{aligned}
$$

But the initial condition is positive, so the positive square root is required.
Also note that $y(0)=4$ is incompatible with the singular solution $y \equiv 0$.

2 (b) (continued)
Substitute the initial condition into the general solution:

$$
y(0)=4 \Rightarrow 4=+\sqrt{\frac{1}{1+A}} \Rightarrow 1+A=\frac{1}{16} \Rightarrow A=-\frac{15}{16}
$$

Therefore the complete solution to the ODE is

$$
y(x)=+\sqrt{\frac{1}{1-\frac{15}{16} e^{4 x}}}
$$

[Additional note on singular solutions:
The constant solutions $y \equiv-1$ and $y \equiv+1$ arise from the general solution of the Bernoulli ODE upon setting the arbitrary constant $A=0$ and are therefore not truly singular.
However there is no value of A in the general solution for which the singular solution $y \equiv 0$ is possible.]
(c) Verify that your solution does satisfy the initial value problem.

$$
\begin{aligned}
& y(x)=\left(1-\frac{15}{16} e^{4 x}\right)^{-1 / 2} \Rightarrow y^{\prime}(x)=-\frac{1}{2}\left(1-\frac{15}{16} e^{4 x}\right)^{-3 / 2}\left(-\frac{15}{4} e^{4 x}\right) \\
& \Rightarrow y^{\prime}+2 y=\frac{15}{8} e^{4 x}\left(1-\frac{15}{16} e^{4 x}\right)^{-3 / 2}+2\left(1-\frac{15}{16} e^{4 x}\right)^{-1 / 2} \\
& =\frac{2\left(\frac{15}{16} e^{4 x}+\left(1-\frac{15}{16} e^{4 x}\right)\right)}{\left(1-\frac{15}{16} e^{4 x}\right)^{3 / 2}}=\frac{2}{\left(1-\frac{15}{16} e^{4 x}\right)^{3 / 2}}=2 y^{3} \\
& y(0)=\sqrt{\frac{1}{1-\frac{15}{16}}}=\sqrt{\frac{1}{\frac{1}{16}}}=\sqrt{16}=4
\end{aligned}
$$

2 (d) Find the complete solution when the initial condition is replaced by $y(0)=0$.

There is no finite value of the arbitrary constant in the general solution in part (b) above which will yield a zero value of y for any finite value of x. However the initial condition here is consistent with the singular solution. Therefore the complete solution in this case is

$$
y \equiv 0
$$

3. For the ordinary differential equation

$$
y d x+(2 x+3 y) d y=0
$$

(a) Show that the ODE is not exact.
$P=y \quad \Rightarrow \quad \frac{\partial P}{\partial y}=1$
$Q=2 x+3 y \quad \Rightarrow \quad \frac{\partial Q}{\partial x}=2 \neq \frac{\partial P}{\partial y}$
Therefore the ODE is not exact.
(b) Find an integrating factor for this ODE.

Try for an integrating factor as a function of x only:

$$
\frac{\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}}{Q}=\frac{1-2}{2 x+3 y}=\frac{-1}{2 x+3 y} \neq R(x)
$$

Therefore the integrating factor cannot be a function of x only.
Try for an integrating factor as a function of y only:

$$
\begin{aligned}
& \frac{\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}}{P}=\frac{2-1}{y}=\frac{1}{y}=R(y) \\
& \Rightarrow \quad \int R(y) d y=\int \frac{1}{y} d y=\ln y \quad \Rightarrow I(y)=e^{\ln y}
\end{aligned}
$$

Therefore the integrating factor is

$$
I(y)=y
$$

3 (c) Hence find the general solution (in implicit form).

The exact form of the ODE is
$y^{2} d x+\left(2 x y+3 y^{2}\right) d y=0$
Seek a potential function $u(x, y)$ such that
$\frac{\partial u}{\partial x}=y^{2} \quad$ and $\quad \frac{\partial u}{\partial y}=2 x y+3 y^{2}$
$\Rightarrow u(x, y)=x y^{2}+y^{3}=c$
This can be expressed in the explicit form

$$
x=\frac{c-y^{3}}{y^{2}}
$$

However, the following implicit form is an acceptable final answer:

$$
x y^{2}+y^{3}=A
$$

[Implicit differentiation of this solution quickly verifies that it does satisfy the original ODE:

$$
\begin{aligned}
& \frac{d}{d x}\left(x y^{2}+y^{3}\right)=1 y^{2}+x\left(2 y \frac{d y}{d x}\right)+3 y^{2} \frac{d y}{d x}=0 \\
& \Rightarrow y \equiv 0 \quad \text { or } \quad y d x+(2 x+3 y) d y=0]
\end{aligned}
$$

4. Find the complete solution to the initial value problem

$$
\frac{d y}{d x}+3 y=3 y^{2 / 3}, \quad y(0)=0
$$

The ODE is separable and it is Bernoulli $\left(n=\frac{2}{3}\right)$.
Separation of variables:

$$
\frac{d y}{d x}+3 y=3 y^{2 / 3} \Rightarrow \frac{d y}{d x}=3 y^{2 / 3}-3 y \Rightarrow \frac{d y}{3\left(y^{2 / 3}-y\right)}=d x \quad \text { or } \quad y \equiv 0
$$

The singular solution $y \equiv 0$ is consistent with the initial condition.
Try to rearrange the left integrand into the form $\frac{f^{\prime}(y)}{f(y)}$:

$$
\frac{1}{3\left(y^{2 / 3}-y\right)}=\frac{1}{3 y^{2 / 3}\left(1-y^{1 / 3}\right)}=\frac{\frac{1}{3} y^{-2 / 3}}{1-y^{1 / 3}}=-\frac{d}{d y}\left(\ln \left(1-y^{1 / 3}\right)\right)
$$

4. (continued)

$$
\begin{aligned}
& \int \frac{d y}{3\left(y^{2 / 3}-y\right)}=\int 1 d x \Rightarrow-\ln \left(1-y^{1 / 3}\right)=x+C \\
& y(0)=0 \Rightarrow-\ln (1-0)=0+C \Rightarrow C=0 \\
& \Rightarrow \ln \left(1-y^{1 / 3}\right)=-x \Rightarrow 1-y^{1 / 3}=e^{-x} \Rightarrow y^{1 / 3}=1-e^{-x}
\end{aligned}
$$

Therefore the complete solution is

$$
y=\left(1-e^{-x}\right)^{3} \text { or } y \equiv 0
$$

OR
Bernoulli ODE (with $n=\frac{2}{3}$):
The change of variables $w=\frac{y^{1-n}}{1-n}=3 y^{1 / 3}$ transforms the ODE into the linear form

$$
\begin{aligned}
& \frac{d w}{d x}+3 \times \frac{1}{3} w=3 \Rightarrow \frac{d w}{d x}+1 w=3 \\
& h=\int 1 d x=x \quad \Rightarrow e^{h}=e^{x} \quad \text { (integrating factor) } \\
& \Rightarrow \int e^{h} R d x=\int e^{x} 3 d x=3 e^{x} \\
& \Rightarrow 3 y^{1 / 3}=w=e^{-h}\left(\int e^{h} R d x+C\right)=e^{-x}\left(3 e^{x}+C\right)
\end{aligned}
$$

$\Rightarrow y^{1 / 3}=1+A e^{-x}$ and the solution $y \equiv 0$ cannot be obtained for any choice of A.
But $y(0)=0 \Rightarrow 0=1+A \Rightarrow A=-1$

$$
\Rightarrow y^{1 / 3}=1-e^{-x} \Rightarrow y=\left(1-e^{-x}\right)^{3}
$$

Therefore the complete solution is

$$
y=\left(1-e^{-x}\right)^{3} \text { or } y \equiv 0
$$

5. A conical tank, of half-angle 30°, contains liquid as shown. The apex has been cut off to leave a circular hole of radius 1 centimetre, through which liquid drains out from the container. The "head" (or height) of liquid above the hole at any instant t is $h(t)$. The tank has a radius at the top of R and a height from the top to the hole of H. All distances are measured in centimetres.

The rate at which the volume $V(t)$ of liquid in the tank changes due to liquid draining at discharge speed $v(t)$
 through a hole of area A is given by the differential equation

$$
\begin{equation*}
\frac{d V}{d t}=-k A v \tag{20}
\end{equation*}
$$

where k is an experimentally determined constant, (dependent on viscosity and the geometry of the opening), between 0 and 1 . For this question, assume $k=0.7$.

In addition, Toricelli's law (equating the gain of kinetic energy of every point in the water to the loss of gravitational potential energy of that point) leads to

$$
v(t)=\sqrt{2 g h(t)}
$$

Find how long it takes (T) for a full tank to drain completely, as a function of the truncated height H of the cone.

Hence find the value of T to the nearest second when $H=30 \mathrm{~cm}$.
Take $g=981 \mathrm{cms}^{-2}$.
5. (continued)

The distance from the hole to the apex of the cone is a, where

$$
\frac{1}{a}=\tan 30^{\circ}=\frac{1}{\sqrt{3}} \quad \Rightarrow \quad a=\sqrt{3}
$$

The area of the circular hole, in units of cm^{2}, is
$A=\pi(1)^{2}=\pi$
The differential equation for the volume, incorporating
Toricelli's law, is

$\frac{d V}{d t}=-k A v=-0.7 \pi \sqrt{2 g h(t)}$

The volume of a cone of radius a and height b is $V=\frac{1}{3} \pi a^{2} b$
The volume of liquid in the tank at any instant t is:
$V(t)=\frac{1}{3} \pi r^{2}(h(t)+\sqrt{3})-\frac{1}{3} \pi(1)^{2} \sqrt{3}$
But, from the geometry of similar triangles,

$$
\begin{aligned}
& \frac{h+\sqrt{3}}{r}=\frac{\sqrt{3}}{1}=\frac{H+\sqrt{3}}{R} \Rightarrow h+\sqrt{3}=r \sqrt{3} \text { and } H+\sqrt{3}=R \sqrt{3} \\
& \Rightarrow V(t)=\frac{\pi \sqrt{3}}{3}\left((r(t))^{3}-1\right) \text { and } \frac{d V}{d t}=-0.7 \pi \sqrt{2 g \sqrt{3}(r-1)}
\end{aligned}
$$

Method 1 (using r as the independent variable):
By the chain rule,

$$
V(t)=\frac{\pi \sqrt{3}}{3}\left(r^{3}-1\right) \Rightarrow \frac{d V}{d t}=\frac{d V}{d r} \cdot \frac{d r}{d t}=\pi r^{2} \sqrt{3} \frac{d r}{d t}
$$

Equate the two expressions for $d V / d t$:

$$
\begin{aligned}
& \frac{d V}{d t}=-0.7 \pi \sqrt{2 g \sqrt{3}(r-1)}=\pi r^{2} \sqrt{3} \frac{d r}{d t} \Rightarrow \frac{d r}{d t}=\frac{-0.7 \sqrt{2 g \sqrt{3}(r-1)}}{r^{2} \sqrt{3}} \\
& \Rightarrow \frac{r^{2}}{\sqrt{r-1}} d r=-0.7 \sqrt{\frac{2 g}{\sqrt{3}}} d t \Rightarrow-\int_{R}^{1} \frac{r^{2}}{\sqrt{r-1}} d r=+0.7 \sqrt{\frac{2 g}{\sqrt{3}}} \int_{0}^{T} 1 d t
\end{aligned}
$$

Note that $\int_{0}^{T} 1 d t=[t]_{0}^{T}=T-0=T$.
5. (continued)

Use the change of variables $u=r-1 \Rightarrow d u=d r$

$$
\begin{aligned}
& \Rightarrow-\int_{R}^{1} \frac{r^{2}}{\sqrt{r-1}} d r=-\int_{R-1}^{0} \frac{(u+1)^{2}}{\sqrt{u}} d u=+\int_{0}^{R-1} \frac{u^{2}+2 u+1}{\sqrt{u}} d u \\
& =\int_{0}^{R-1}\left(u^{3 / 2}+2 u^{1 / 2}+u^{-1 / 2}\right) d u=\left[\frac{2 u^{5 / 2}}{5}+\frac{4 u^{3 / 2}}{3}+2 u^{1 / 2}\right]_{0}^{R-1} \\
& =\left[\frac{6 u^{5 / 2}+20 u^{3 / 2}+30 u^{1 / 2}}{15}\right]_{0}^{R-1}=\frac{6(R-1)^{5 / 2}+20(R-1)^{3 / 2}+30(R-1)^{1 / 2}}{15}-0 \\
& \Rightarrow T=\frac{10}{7 \times 15} \sqrt{\frac{\sqrt{3}}{2 g}}\left(6(R-1)^{5 / 2}+20(R-1)^{3 / 2}+30(R-1)^{1 / 2}\right) \\
& \Rightarrow T=\frac{1}{21} \sqrt{\frac{2(R-1) \sqrt{3}}{g}}\left(6(R-1)^{2}+20(R-1)+30\right) \\
& H=(R-1) \sqrt{3} \Rightarrow T=\frac{1}{21} \sqrt{\frac{2 H}{g}}\left(2 H^{2}+20 \frac{H}{\sqrt{3}}+30\right) \text { or } \\
& \Rightarrow T=\frac{1}{21} \sqrt{\frac{2 H}{3 g}}\left(2 \sqrt{3} H^{2}+20 H+30 \sqrt{3}\right)
\end{aligned}
$$

OR

Method 2 (using h as the independent variable):

$$
\begin{aligned}
& V(t)=\frac{\pi \sqrt{3}}{3}\left((r(t))^{3}-1\right)=\frac{\pi \sqrt{3}}{3}\left(\left(1+\frac{h(t)}{\sqrt{3}}\right)^{3}-1\right) \\
& \Rightarrow \frac{d V}{d t}=\pi\left(1+\frac{h}{\sqrt{3}}\right)^{2} \frac{d h}{d t}=-0.7 \pi \sqrt{2 g h} \\
& \Rightarrow \frac{1}{\sqrt{h}}\left(1+\frac{h}{\sqrt{3}}\right)^{2} \frac{d h}{d t}=-0.7 \sqrt{2 g} \Rightarrow \frac{1+\frac{2}{\sqrt{3}} h+\frac{1}{3} h^{2}}{\sqrt{h}} d h=-0.7 \sqrt{2 g} d t \\
& \Rightarrow-\int_{H}^{0}\left(h^{-1 / 2}+\frac{2}{\sqrt{3}} h^{1 / 2}+\frac{1}{3} h^{3 / 2}\right) d h=+\frac{7}{10} \sqrt{2 g} \int_{0}^{T} 1 d t
\end{aligned}
$$

5. (continued)

$$
\begin{aligned}
& \Rightarrow \quad+\left[2 h^{1 / 2}+\frac{4 h^{3 / 2}}{3 \sqrt{3}}+\frac{2 h^{5 / 2}}{15}\right]_{0}^{H}=+\frac{7}{10} \sqrt{2 g}[t]_{0}^{T} \\
& \Rightarrow \quad T=\frac{10}{7} \sqrt{\frac{H}{2 g}} \cdot \frac{30 \sqrt{3}+20 H+2 \sqrt{3} H^{2}}{15 \sqrt{3}} \text { or } \\
& T=\frac{1}{21} \sqrt{\frac{2 H}{3 g}}\left(2 \sqrt{3} H^{2}+20 H+30 \sqrt{3}\right) \\
&
\end{aligned}
$$

Replacing g by $981 \mathrm{~cm} \mathrm{~s}^{-2}$ and H by 30 cm , we find $T=25.6308 \ldots \mathrm{~s}$, or, to the nearest second,

$$
T=26 \mathrm{~s}
$$

An Excel file is available here. It displays values of T for various choices of H.
6. A five metre long chain with a constant line density of $\rho \mathrm{kg} / \mathrm{m}$ is supported in a pile on a platform several metres above the floor of a warehouse. It is wound around a frictionless pulley at the edge of the platform, with one metre of chain already hanging down at time $t=0$, when the chain is released from rest. Let $x(t)$ represent the length of that part of the chain hanging down from the pulley at time t and let $v(t)$ be the speed of that part of the chain at time t.
(a) Show that the ordinary differential equation governing the speed of the chain is

$$
\frac{d v}{d x}+\frac{1}{x} v=\frac{g}{v}, \quad(1 \leq x \leq 5)
$$

where $g \approx 9.81 \mathrm{~m} \mathrm{~s}^{-2}$ is the acceleration due to gravity and where all frictional forces are ignored.

Also, the chain starts at $x=1$ and the trailing end leaves the pulley when $x=5$. Therefore the governing ODE is

$$
\frac{d v}{d x}+\frac{1}{x} v=\frac{g}{v}, \quad(1 \leq x \leq 5)
$$

6 (b) Determine the speed with which the trailing end of the chain leaves the pulley.

The ODE is a Bernoulli ODE, with $P=x-1, \quad R=g$ and $n=-1$.
Using the substitution $w=\frac{v^{1-(-1)}}{1-(-1)}=\frac{v^{2}}{2}$ the ODE transforms into the linear ODE

$$
\begin{aligned}
& \quad \frac{d w}{d x}+\frac{2}{x} w=g \\
& h=\int \frac{2}{x} d x=2 \ln x=\ln \left(x^{2}\right) \Rightarrow e^{h}=x^{2} \\
& \int e^{h} R d x=\int x^{2} g d x=\frac{g x^{3}}{3} \\
& \Rightarrow \frac{v^{2}}{2}=w=e^{-h}\left(\int e^{h} R d x+C\right)=\frac{1}{x^{2}}\left(\frac{g x^{3}}{3}+C\right)=\frac{g x}{3}+\frac{C}{x^{2}} \\
& \text { But } v=0 \text { when } x=1 \Rightarrow 0=\frac{g}{3}+C \Rightarrow C=-\frac{g}{3}
\end{aligned}
$$

The complete solution to the ODE, in implicit form, is

$$
\begin{gathered}
v^{2}=\frac{2 g}{3}\left(x-\frac{1}{x^{2}}\right) \\
x=5 \quad \Rightarrow \quad v=\sqrt{\frac{2 g}{3}\left(5-\frac{1}{25}\right)}=\sqrt{\frac{2 g}{3}\left(\frac{124}{25}\right)}=\frac{2}{5} \sqrt{\frac{62 g}{3}}
\end{gathered}
$$

Therefore, to 3 s.f., the speed with which the trailing end of the chain leaves the pulley is

$$
v=5.70 \mathrm{~m} \mathrm{~s}^{-1}
$$

(7) Return to the index of assignments

