ENGI 9420 Engineering Analysis Solutions to Additional Exercises

2012 Fall

[Partial differential equations; Chapter 8]

1 The function $u(x, y)$ satisfies $\frac{\partial^{2} u}{\partial x^{2}}-3 \frac{\partial^{2} u}{\partial x \partial y}+2 \frac{\partial^{2} u}{\partial y^{2}}=0$, subject to the boundary conditions $u(x, 0)=\left.\frac{\partial}{\partial y} u(x, y)\right|_{y=0}=-1$. Classify the partial differential equation (hyperbolic, parabolic or elliptic) and find the complete solution $u(x, y)$.

Compare this PDE with the standard form for a d'Alembert solution
$A \frac{\partial^{2} u}{\partial x^{2}}+B \frac{\partial^{2} u}{\partial x \partial y}+C \frac{\partial^{2} u}{\partial y^{2}}=0$
$A=1, \quad B=-3, \quad C=2 \Rightarrow D=B^{2}-4 A C=9-8=1>0$
This PDE is therefore

hyperbolic everywhere

Solving the characteristic (or auxiliary) equation:
$\lambda=\frac{-B \pm \sqrt{D}}{2 A}=\frac{+3 \pm \sqrt{1}}{2}=1$ or 2
This PDE is homogeneous, so the complementary function is also the general solution:
$u(x, y)=f(y+1 x)+g(y+2 x)$,
where f and g could be any twice-differentiable functions of their arguments.
Imposing the boundary conditions:

$$
\begin{align*}
& u(x, 0)=f(x)+g(2 x)=-1 \tag{A}\\
& u_{y}(x, y)=f^{\prime}(y+x)+g^{\prime}(y+2 x) \\
& u_{y}(x, 0)=f^{\prime}(x)+g^{\prime}(2 x)=-1 \tag{B}\\
\frac{\partial}{\partial x}(\mathbf{A}): & f^{\prime}(x)+2 g^{\prime}(2 x)=0 \tag{C}
\end{align*}
$$

$(\mathbf{C})-(\mathbf{B}): \quad g^{\prime}(2 x)=1 \Rightarrow g^{\prime}(x)=1 \Rightarrow g(x)=x+k$

$$
(A) \Rightarrow \quad f(x)=-1-g(2 x)=-1-2 x-k
$$

1. (continued)

Therefore the complete solution is
$u(x, y)=f(y+x)+g(y+2 x)=(-1-2(y+x)-\nless)+((y+2 x)+\nless)$
[Note that the arbitrary constant k always cancels out in this type of PDE solution.] \Rightarrow

$$
u(x, y)=-y-1
$$

2. Classify the partial differential equation $4 \frac{\partial^{2} u}{\partial x^{2}}+12 \frac{\partial^{2} u}{\partial x \partial y}+9 \frac{\partial^{2} u}{\partial y^{2}}=0$ and find its general solution.

$$
A=4, \quad B=12, \quad C=9 \Rightarrow D=B^{2}-4 A C=144-144=0
$$

This PDE is therefore

parabolic everywhere

Solving the characteristic (or auxiliary) equation:
$\lambda=\frac{-B \pm \sqrt{D}}{2 A}=\frac{-12 \pm \sqrt{0}}{8}=-\frac{3}{2}$ or $-\frac{3}{2}$
General solution:
$u(x, y)=f\left(y+\left(-\frac{3}{2}\right) x\right)+h(x, y) g\left(y+\left(-\frac{3}{2}\right) x\right)$,
or equivalently
$u(x, y)=f(2 y-3 x)+h(x, y) g(2 y-3 x)$,
where f and g could be any twice-differentiable functions of their arguments and h is any convenient non-trivial linear function of x and y except a multiple of $2 y-3 x$.
Arbitrarily choose $h=x$.
Then the general solution can be written as

$$
u(x, y)=f(2 y-3 x)+x g(2 y-3 x)
$$

[The functional forms of f and g remain arbitrary in the absence of any further information.]
3. A disturbance on a very long string causes a vertical displacement $y(x, t)$
at a distance x from the origin at time t. The string is released from rest at time $t=0$ with initial displacement $f(x)=\frac{1}{1+8 x^{2}}$.
(a) Find the subsequent motion of this string $y(x, t)$.

The general solution to the wave equation with initial displacement $f(x)$ and initial velocity $g(x)$ is
$y(x, t)=\frac{f(x+c t)+f(x-c t)}{2}+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(u) d u$
Release from rest $\Rightarrow g(x)=0$ at all times.

$$
f(x)=\frac{1}{1+8 x^{2}}
$$

The complete solution follows quickly:

$$
y(x, t)=\frac{1}{2}\left(\frac{1}{1+8(x+c t)^{2}}+\frac{1}{1+8(x-c t)^{2}}\right)
$$

(b) Sketch or plot the wave form at time $t=0$ and at any two subsequent times.

There is an animation available from this Maple file.

4. Classify the partial differential equation $\nabla^{2} u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=12 x$ and find the complete solution given the additional information

$$
u(0, y)=0,\left.\quad\left(\frac{\partial}{\partial x} u(x, y)\right)\right|_{x=0}=3 y^{2}
$$

$A=C=1, \quad B=0 \Rightarrow D=0-4=-4<0$
This PDE is therefore

elliptic everywhere

Solving the characteristic (or auxiliary) equation:
$\lambda=\frac{-0 \pm \sqrt{-4}}{2}= \pm j$
Complementary function:
$u_{C}(x, y)=f(y+(-j) x)+g(y+j x)$,
Particular solution:
The right side is a first order polynomial.
The second derivatives of u_{p} must match that first order polynomial.
Therefore try
$u_{P}=a x^{3}+b x^{2} y+c x y^{2}+d y^{3}$
$\Rightarrow \quad\left(u_{P}\right)_{x}=3 a x^{2}+2 b x y+c y^{2}+0, \quad\left(u_{P}\right)_{y}=0+b x^{2}+2 c x y+3 d y^{2}$
$\Rightarrow \quad\left(u_{P}\right)_{x x}=6 a x+2 b y+0, \quad\left(u_{P}\right)_{y y}=0+2 c x+6 d y$
Substitute into the PDE:
$\left(u_{P}\right)_{x x}+\left(u_{P}\right)_{y y}=6 a x+2 b y+2 c x+6 d y=12 x+0 y$
Matching coefficients of $x: 6 a+2 c=12 \Rightarrow c=6-3 a=3(2-a)$
Matching coefficients of $y: \quad 2 b+6 d=0 \Rightarrow b=-3 d$
There are two free parameters (a and d). Leave them unresolved for now.
General solution:

$$
\begin{aligned}
& u(x, y)=f(y+(-j) x)+g(y+j x)+a x^{3}-3 d x^{2} y+3(2-a) x y^{2}+d y^{3} \\
& \Rightarrow u_{x}(x, y)=-j \cdot f^{\prime}(y-j x)+j \cdot g^{\prime}(y+j x)+3 a x^{2}-6 d x y+3(2-a) y^{2}+0
\end{aligned}
$$

4. (continued)

Imposing the boundary conditions,

$$
\begin{align*}
& u(0, y)=0 \Rightarrow \\
& f(y)+g(y)+0-0+0+d y^{3}=0 \\
& u_{x}(0, y)=3 y^{2} \Rightarrow \\
& -j \cdot f^{\prime}(y)+j \cdot g^{\prime}(y)+0-0+3(2-a) y^{2}=3 y^{2} \tag{B}\\
& \frac{d}{d y}(\mathbf{A}): \quad f^{\prime}(y)+g^{\prime}(y)+3 d y^{2}=0 \tag{C}
\end{align*}
$$

(B) $+j(C)$:

$$
\begin{equation*}
0+2 j \cdot g^{\prime}(y)+0-0+3(2-a+d) y^{2}=3 y^{2} \Rightarrow g^{\prime}(y)=\frac{3(d-a-1) y^{2}}{2 j} \tag{D}
\end{equation*}
$$

(A) $\Rightarrow f(y)=-g(y)-d y^{3}$
(E)

Now select values for a and d that simplify this problem as much as possible.
If we choose $a=1$ and $d=0$ then
(D) $\Rightarrow g^{\prime}(y)=0 \Rightarrow g(y)=0$ and
(E) $\Rightarrow f(y)=0$
so that the complete solution becomes

$$
\begin{array}{r}
u(x, y)=0+0+1 x^{3}-0 x^{2} y+3(2-1) x y^{2}+0 y^{3} \Rightarrow \\
u(x, y)=x^{3}+3 x y^{2}
\end{array}
$$

Note that the solution is not a harmonic function on \mathbb{R}^{2}, because $\nabla^{2} u \neq 0$ (except on the y-axis).
However it is subharmonic on any domain entirely within the right half-plane ($x>0$) and it is superharmonic on any domain entirely within the left half-plane.
5. Classify the partial differential equation $\frac{\partial^{2} u}{\partial^{2} x}-7 \frac{\partial^{2} u}{\partial x \partial y}+10 \frac{\partial^{2} u}{\partial^{2} y}=-3$ and find the complete solution, given the additional information
$u(x, 0)=2 x^{2}+4, \quad u_{y}(x, 0)=x$
$A=1, \quad B=-7, \quad C=10 \Rightarrow D=49-40=9>0$
This PDE is therefore

hyperbolic everywhere

Solving the characteristic (or auxiliary) equation:
$\lambda=\frac{+7 \pm \sqrt{9}}{2}=2$ or 5
The complementary function is therefore $u_{C}(x, y)=f(y+2 x)+g(y+5 x)$
The right side of the PDE is a constant and the left side includes only second derivatives.
Therefore try a pure second order polynomial function as the particular solution:

$$
\begin{aligned}
& u_{P}=a x^{2}+b x y+c y^{2} \\
& \Rightarrow \quad\left(u_{P}\right)_{x}=2 a x+b y+0, \quad\left(u_{P}\right)_{y}=0+b x+2 c y \\
& \Rightarrow \quad\left(u_{P}\right)_{x x}=2 a+0+0, \quad\left(u_{P}\right)_{x y}=0+b+0, \quad\left(u_{P}\right)_{y y}=0+0+2 c \\
& \Rightarrow\left(u_{P}\right)_{x x}-7\left(u_{P}\right)_{x y}+10\left(u_{P}\right)_{y y}=2 a-7 b+20 c=-3
\end{aligned}
$$

There is only one constraint on three parameters.
Leave the choice of the two free parameters unresolved for now.
The general solution to the PDE is:

$$
\begin{aligned}
& u(x, y)=f(y+2 x)+g(y+5 x)+a x^{2}+b x y+c y^{2} \quad \text { (where } 2 a-7 b+20 c=-3 \text {) } \\
& \Rightarrow \frac{\partial u}{\partial y}=f^{\prime}(y+2 x)+g^{\prime}(y+5 x)+0+b x+2 c y
\end{aligned}
$$

Including the two additional items of information:
$u(x, 0)=2 x^{2}+4 \Rightarrow f(2 x)+g(5 x)+a x^{2}+0+0=2 x^{2}+4$
$u_{y}(x, 0)=x \quad \Rightarrow \quad f^{\prime}(2 x)+g^{\prime}(5 x)+b x+0=x$
$\frac{d}{d x}(\mathbf{A}): 2 f^{\prime}(2 x)+5 g^{\prime}(5 x)+2 a x=4 x$
(C) - 2 (B): $0+3 g^{\prime}(5 x)+(2 a-2 b) x=(4-2) x \Rightarrow g^{\prime}(5 x)=\frac{2(1+b-a) x}{3}$
(B) $\Rightarrow f^{\prime}(2 x)=(1-b) x-g^{\prime}(5 x)$
(E)

This problem is simplified if we choose $b=1$ and $a=2$. Then
5. (continued)
(D) $\Rightarrow g^{\prime}(5 x)=0 \Rightarrow g(5 x)=0$ and
(A) $\Rightarrow f(2 x)+0+2 x^{2}=2 x^{2}+4 \Rightarrow f(2 x)=4 \Rightarrow f(x)=4$

With $b=1$ and $a=2$ we have $4-7+20 c=-3 \Rightarrow c=0$
Therefore the complete solution is
$u(x, y)=4+0+2 x^{2}+x y+0 \Rightarrow$

$$
u(x, y)=2 x^{2}+x y+4
$$

It is fairly straightforward to verify that this solution does satisfy the partial differential equation and both conditions:

$$
\begin{aligned}
& u(x, y)=2 x^{2}+x y+4 \Rightarrow u_{x}=4 x+y, \quad u_{y}=x \\
& \Rightarrow u_{x x}=4, \quad u_{x y}=1, \quad u_{y y}=0 \\
& \Rightarrow u_{x x}-7 u_{x y}+10 u_{y y}=4-7+0=-3 \\
& u(x, 0)=2 x^{2}+0+4 \\
& u_{y}(x, y)=x \Rightarrow u_{y}(x, 0)=x
\end{aligned}
$$

6. Classify the partial differential equation $\frac{\partial u}{\partial t}=4 \frac{\partial^{2} u}{\partial x^{2}}$ and find its complete solution on the interval $0 \leq x \leq 100$ for all positive time t, given the additional information $u(0, t)=0 \quad$ and $\quad u(100, t)=100 \quad \forall t \geq 0$
and $\quad u(x, 0)=2 x-\left(\frac{x}{10}\right)^{2} \quad \forall x \in[0,100]$
Also write down the steady state solution.
t is playing the role of y.
$A=4, \quad B=0, \quad C=0 \Rightarrow D=0-4(4)(0)=0$
This is also the PDE for heat diffusion. Therefore
```
the PDE is parabolic.
```

6. (continued)

From page 8.36 of the lecture notes (Example 8.06.1), the complete solution of the heat equation (with the boundary conditions of constant temperatures T_{1} and T_{2} at the ends $x=0$ and $x=L$ respectively and an initial temperature profile on $[0, L]$ of $u(x, 0)=f(x)$) is

$$
\begin{aligned}
& u(x, t)=\left(\frac{T_{2}-T_{1}}{L}\right) x+T_{1}+ \\
& \frac{2}{L} \sum_{n=1}^{\infty}\left(\int_{0}^{L}\left(f(z)-\frac{T_{2}-T_{1}}{L} z-T_{1}\right) \sin \left(\frac{n \pi z}{L}\right) d z\right) \sin \left(\frac{n \pi x}{L}\right) \exp \left(-\frac{n^{2} \pi^{2} k t}{L^{2}}\right)
\end{aligned}
$$

In this case $k=4, L=100, T_{1}=0, T_{2}=100$ and $f(x)=2 x-(x / 10)^{2}$.

$$
\begin{aligned}
& \Rightarrow \quad \frac{T_{2}-T_{1}}{L} x+T_{1}=\frac{100-0}{100} x+0=x \\
& \Rightarrow f(z)-\frac{T_{2}-T_{1}}{L} z-T_{1}=2 z-\left(\frac{z}{10}\right)^{2}-z=z-\left(\frac{z}{10}\right)^{2}
\end{aligned}
$$

The coefficients in the Fourier sine series become

$$
\begin{aligned}
& \int_{0}^{100}\left(z-\left(\frac{z}{10}\right)^{2}\right) \sin \left(\frac{n \pi z}{100}\right) d z= \\
& {\left[-\left.\left.\left(\left(z-\left(\frac{z}{10}\right)^{2}\right) \frac{100}{n \pi}+\frac{1}{50}\left(\frac{100}{n \pi}\right)^{3}\right) \cos \left(\frac{n \pi z}{100}\right)\right|^{100}\right|_{0}\right.} \\
& \quad+\left(1-\frac{z}{50}\right)\left(\frac{100}{n \pi}\right)^{2} \sin \left(\frac{n \pi z}{100}\right) \\
& =\left(-\left(0+\frac{1}{50}\left(\frac{100}{n \pi}\right)^{3}\right) \cos (n \pi)+0\right) \\
& \quad-\left(-\left(0+\frac{1}{50}\left(\frac{100}{n \pi}\right)^{3}\right)+0\right)=\frac{1}{50}\left(\frac{100}{n \pi}\right)^{3}\left(1-(-1)^{n}\right) \\
& \Rightarrow \quad b_{n}=\left\{\begin{array}{cl}
\frac{1}{25}\left(\frac{100}{n \pi}\right)^{3} & (n \text { odd }) \\
0 & \text { (n even) }
\end{array}\right.
\end{aligned}
$$

6. (continued)

Also $\frac{2}{L}=\frac{1}{50}$. After some simplification of constants and substitution of $(2 k-1)$ for the index of summation n, the complete solution becomes

$$
u(x, t)=x+\frac{800}{\pi^{3}} \sum_{k=1}^{\infty} \frac{1}{(2 k-1)^{3}} \sin \left(\frac{(2 k-1) \pi x}{100}\right) \exp \left(-\frac{(2 k-1)^{2} \pi^{2} t}{2500}\right)
$$

The Fourier series converges rapidly with increasing k.
The steady state solution is $\lim _{t \rightarrow \infty} u(x, t)=x$
An animated version of the graph of this solution is available at www.engr.mun.ca/~ggeorge/9420/solution/a7/q6graph.html

Two snapshots of $u(x, t)$:

[The Maple file used to generate these diagrams is available here.]
7. An ideal perfectly elastic string of length 1 m is fixed at both ends (at $x=0$ and at $x=1$). The string is displaced into the form $y(x, 0)=f(x)=x^{2}(1-x)^{2}$ and is released from rest. Waves travel without friction along the string at a speed of $2 \mathrm{~m} / \mathrm{s}$. Find the displacement $y(x, t)$ at all locations on the string $(0<x<1)$ and at all subsequent times ($t>0$).

Write down the complete Fourier series solution and the first two non-zero terms.

From page 8.05 of the lecture notes, with $L=1$ and $c=2$, the complete solution can be quoted as
$y(x, t)=\frac{2}{1} \sum_{n=1}^{\infty}\left(\int_{0}^{1} f(u) \sin \left(\frac{n \pi u}{1}\right) d u\right) \sin \left(\frac{n \pi x}{1}\right) \cos \left(\frac{2 n \pi t}{1}\right)$
$c_{n}=\int_{0}^{1} f(u) \sin (n \pi u) d u=\int_{0}^{1}\left(u^{2}(1-u)^{2}\right) \sin (n \pi u) d u$
$=\int_{0}^{1}\left(u^{2}-2 u^{3}+u^{4}\right) \sin (n \pi u) d u$
$=\left[\left(-\frac{\left(u^{2}-2 u^{3}+u^{4}\right)}{n \pi}+\frac{2-12 u+12 u^{2}}{(n \pi)^{3}}-\frac{24}{(n \pi)^{5}}\right) \cos (n \pi u)\right.$

$=\frac{2}{(n \pi)^{3}}\left(\frac{12}{(n \pi)^{2}}-1\right)\left(1-(-1)^{n}\right)=\left\{\begin{array}{cc}\frac{4}{(n \pi)^{3}}\left(\frac{12}{(n \pi)^{2}}-1\right) & \text { (n odd) } \\ 0 & \text { (n even) }\end{array}\right.$
Let $n=2 k-1, \quad(k \in \mathbb{N})$
7. (continued)

The complete solution is

$$
y(x, t)=\frac{8}{\pi^{3}} \sum_{k=1}^{\infty}\left(\frac{1}{(2 k-1)^{3}}\left(\frac{12}{((2 k-1) \pi)^{2}}-1\right)\right) \sin ((2 k-1) \pi x) \cos (2(2 k-1) \pi t)
$$

The series is also

$$
y(x, t)=\frac{8}{\pi^{3}}\left(\left(\left(\frac{12}{\pi^{2}}-1\right)\right) \sin (\pi x) \cos (2 \pi t)+\left(\frac{1}{27}\left(\frac{12}{(3 \pi)^{2}}-1\right)\right) \sin (3 \pi x) \cos (6 \pi t)+\ldots\right)
$$

Plotted here are $y(x, 0)=f(x)=x^{2}(1-x)^{2}$ (in blue) on top of

$$
S_{3}(x)=\frac{8}{\pi^{3}}\left(\left(\left(\frac{12}{\pi^{2}}-1\right)\right) \sin (\pi x)+\left(\frac{1}{27}\left(\frac{12}{(3 \pi)^{2}}-1\right)\right) \sin (3 \pi x)\right) \quad \text { (in red) }
$$

The convergence of the Fourier series is so rapid that there is excellent agreement between the two plots, even when using just the first two non-trivial terms of the series!

A Maple animation of the wave is available at a7/q7graph.html.
(7) Return to the index of assignments

