When $\mathbf{P}[A \mid B]=\mathbf{P}[B \mid A]$

1. Introduction

Many students encountering probability theory for the first time have difficulty distinguishing conditional probabilities from joint or unconditional probabilities and they often confuse the conditional probabilities $\mathrm{P}[A \mid B]$ and $\mathrm{P}[B \mid A]$. For a pair of compatible events A, B whose unconditional probabilities are neither 0 nor 1, this note demonstrates two consequences when $\mathrm{P}[A \mid B]=\mathrm{P}[B \mid A]: \quad \mathrm{P}[B]=\mathrm{P}[A]$ and $\mathrm{P}[A \mid \tilde{B}]=\mathrm{P}[B \mid \tilde{A}] . \quad$ The development of these consequences also provides some practice in the application of the laws of elementary probability.

2. $\mathrm{P}[B]=\mathrm{P}[A]$

The general multiplication law of probability quickly verifies that $\mathrm{P}[A \mid B]$ and $\mathrm{P}[B \mid A]$ are different, except when possible and compatible events A, B are equally likely:
$\mathrm{P}[A B]=\mathrm{P}[B] \mathrm{P}[A \mid B]=\mathrm{P}[A] \mathrm{P}[B \mid A]$
$\Rightarrow \mathrm{P}[A \mid B]=\frac{\mathrm{P}[A] \mathrm{P}[B \mid A]}{\mathrm{P}[B]}$
If $\mathrm{P}[B] \neq \mathrm{P}[A]$ then $\mathrm{P}[A \mid B] \neq \mathrm{P}[B \mid A]$.

Among the serious consequences of a failure to distinguish between $\mathrm{P}[A \mid B]$ and $\mathrm{P}[B \mid A]$ is the now-notorious "prosecutor's fallacy" [1]. One tragic case of a miscarriage of justice was summarised in the Mathematical Association President's Address of 2003 [2]. In a criminal trial involving forensic evidence, if I represents the event that an accused person is innocent and M represents the event that a forensic match occurs, implicating the accused in the crime, then it is often the case that $\mathrm{P}[M \mid I]$ is tiny (much less than one in a thousand), but the jury needs to know $\mathrm{P}[I \mid M]$. From equation (2) they are connected by

$$
\begin{equation*}
\mathrm{P}[I \mid M]=\mathrm{P}[M \mid I] \cdot \frac{\mathrm{P}[I]}{\mathrm{P}[M]} \tag{3}
\end{equation*}
$$

$\mathrm{P}[I \mid M]$ can be a substantially larger number, enough in some cases for $I \mid M$ to be odds on.

Equation (2) shows clearly that if $\mathrm{P}[A]$ and $\mathrm{P}[B]$ are non-zero and equal to each other, then $\mathrm{P}[A \mid B]=\mathrm{P}[B \mid A]$.
Rearranging equation (2) we have
$\mathrm{P}[B]=\mathrm{P}[A] \cdot \frac{\mathrm{P}[B \mid A]}{\mathrm{P}[A \mid B]}$

If events A, B are mutually exclusive then $\mathrm{P}[A \mid B]=\mathrm{P}[B \mid A]=0$ and the expression for $\mathrm{P}[B]$ in equation (4) is indeterminate. $\mathrm{P}[A \mid B]=\mathrm{P}[B \mid A] \neq 0$ in equation (4) leads to $\mathrm{P}[B]=\mathrm{P}[A]$.

An appeal to symmetry between events A, B when $\mathrm{P}[A \mid B]=\mathrm{P}[B \mid A]$ also suggests that A, B should be equally likely, but this symmetry argument fails when the two events are mutually exclusive. The Venn probability diagram of figure 1 provides a simple counterexample.

Figure 1: $\mathrm{P}[A \mid B]=\mathrm{P}[B \mid A]$ but $\mathrm{P}[B] \neq \mathrm{P}[A]$
3. $\mathrm{P}[A \mid \tilde{B}]=\mathrm{P}[B \mid \tilde{A}]$

Now we show that $\mathrm{P}[A \mid B]=\mathrm{P}[B \mid A] \neq 0$ forces $\mathrm{P}[A \mid \tilde{B}]=\mathrm{P}[B \mid \tilde{A}]$, (unless
$\mathrm{P}[A]=\mathrm{P}[B]=1$). From the definition of conditional probability (which follows from the general multiplication law of probability),

$$
\begin{equation*}
\mathrm{P}[A \mid \tilde{B}]=\frac{\mathrm{P}[A \tilde{B}]}{\mathrm{P}[\tilde{B}]} \tag{5}
\end{equation*}
$$

Applying the general multiplication law of probability in the numerator,

$$
\begin{equation*}
\mathrm{P}[A \mid \tilde{B}]=\frac{\mathrm{P}[A] \mathrm{P}[\tilde{B} \mid A]}{\mathrm{P}[\tilde{B}]} \tag{6}
\end{equation*}
$$

Applying the total probability law to pairs of complementary events,

$$
\begin{equation*}
\mathrm{P}[A \mid \tilde{B}]=\frac{\mathrm{P}[A](1-\mathrm{P}[B \mid A])}{1-\mathrm{P}[B]} \tag{7}
\end{equation*}
$$

By a similar set of operations,

$$
\begin{equation*}
\mathrm{P}[B \mid \tilde{A}]=\frac{\mathrm{P}[B \tilde{A}]}{\mathrm{P}[\tilde{A}]}=\frac{\mathrm{P}[B] \mathrm{P}[\tilde{A} \mid B]}{\mathrm{P}[\tilde{A}]}=\frac{\mathrm{P}[B](1-\mathrm{P}[A \mid B])}{1-\mathrm{P}[A]} \tag{8}
\end{equation*}
$$

But if $\mathrm{P}[A \mid B]=\mathrm{P}[B \mid A] \neq 0$ then $\mathrm{P}[B]=\mathrm{P}[A]$ and equations (7) and (8) both reduce to

$$
\begin{equation*}
\mathrm{P}[A \mid \tilde{B}]=\mathrm{P}[B \mid \tilde{A}]=\frac{\mathrm{P}[A](1-\mathrm{P}[B \mid A])}{1-\mathrm{P}[A]} \tag{9}
\end{equation*}
$$

unless $\mathrm{P}[A]=\mathrm{P}[B]=1$, in which case this expression for $\mathrm{P}[A \mid \tilde{B}]$ and $\mathrm{P}[B \mid \tilde{A}]$ is indeterminate (not surprising, when \tilde{A}, \tilde{B} are both impossible events).

4. Finding $\mathrm{P}[A]$ from $\mathrm{P}[A \mid B]$ and $\mathrm{P}[A \mid \tilde{B}]$

When $\mathrm{P}[A \mid B]=\mathrm{P}[B \mid A] \neq 0$ and neither A nor B is the universal set, equation (9) leads to an expression for $\mathrm{P}[A]$ and $\mathrm{P}[B]$ in terms of $\mathrm{P}[A \mid B]$ and $\mathrm{P}[A \mid \tilde{B}]$ only.

$$
\begin{align*}
& \mathrm{P}[B \mid \tilde{A}]=\frac{\mathrm{P}[A](1-\mathrm{P}[B \mid A])}{1-\mathrm{P}[A]} \\
& \Rightarrow \quad(1-\mathrm{P}[A]) \mathrm{P}[B \mid \tilde{A}]=\mathrm{P}[A](1-\mathrm{P}[B \mid A]) \\
& \Rightarrow \mathrm{P}[B \mid \tilde{A}]=\mathrm{P}[A](1-\mathrm{P}[B \mid A]+\mathrm{P}[B \mid \tilde{A}]) \\
& \Rightarrow \mathrm{P}[A]=\frac{\mathrm{P}[B \mid \tilde{A}]}{1-\mathrm{P}[B \mid A]+\mathrm{P}[B \mid \tilde{A}]} \tag{10}
\end{align*}
$$

or, equivalently,

$$
\begin{equation*}
\mathrm{P}[B]=\mathrm{P}[A]=\frac{\mathrm{P}[A \mid \tilde{B}]}{1-\mathrm{P}[A \mid B]+\mathrm{P}[A \mid \tilde{B}]} \tag{11}
\end{equation*}
$$

5. Example

Suppose that a current passes through a pair of pumping stations that are connected in parallel (as in figure 2). Each station has a 95% chance of operating properly if the other is functioning properly. However, a failure in one station puts more strain on the other station. The probability that either station operates properly when the other station has failed is only 20%. Find the unconditional probability for a station to operate properly and find the probability that the current will pass through this system.

Figure 2: System connected in parallel

Solution

From the information in the question
$\mathrm{P}[A \mid B]=\mathrm{P}[B \mid A]=.95$ and $\mathrm{P}[A \mid \tilde{B}]=\mathrm{P}[B \mid \tilde{A}]=.20$
where A represents the event that pumping station \#1 is functioning properly and B represents the event that pumping station \#2 is functioning properly
Equation (11) $\Rightarrow \mathrm{P}[A]=\mathrm{P}[B]=\frac{.20}{1-.95+.20}=\frac{20}{25}=\frac{4}{5}$

The probability that a station is functioning is 80%, in the absence of knowledge about the status of the other station. That probability rises to 95% if it is known that the other station is working, but falls to 20% if it is known that the other station has failed. While they are identical, the two events A, B are strongly dependent.

Current will pass through the system if at least one of the stations is functioning.
The probability that current will pass through this system is

$$
\begin{aligned}
& \mathrm{P}[A \cup B]=\mathrm{P}[\sim(\tilde{A} \cap \tilde{B})] \quad \text { (deMorgan's law) } \\
& =1-\mathrm{P}[\tilde{A} \cap \tilde{B}] \quad \text { (complementary events) } \\
& =1-\mathrm{P}[\tilde{A}] \mathrm{P}[\tilde{B} \mid \tilde{A}] \quad \text { (general multiplication law) } \\
& =1-(1-\mathrm{P}[A])(1-\mathrm{P}[B \mid \tilde{A}]) \quad \text { (complementary events) } \\
& =1-\left(1-\frac{4}{5}\right)\left(1-\frac{1}{5}\right)=1-\frac{4}{25} \\
& \Rightarrow \mathrm{P}[A \cup B]=\frac{21}{25}=84 \%
\end{aligned}
$$

A direct approach is to partition the union into its three mutually exclusive and collectively exhaustive components:
$\mathrm{P}[A \cup B]=\mathrm{P}[A$ only $]+\mathrm{P}[B$ only $]+\mathrm{P}[$ both $]$
$=\mathrm{P}[A \cap \tilde{B}]+\mathrm{P}[\tilde{A} \cap B]+\mathrm{P}[A \cap B]$
But, from the total probability law, $\mathrm{P}[A]=\mathrm{P}[A \cap \tilde{B}]+\mathrm{P}[A \cap B]$

Figure 3: $\mathrm{P}[A \cup B]=\mathrm{P}[A]+\mathrm{P}[\tilde{A} \cap B]$
$\Rightarrow \mathrm{P}[A \cup B]=\mathrm{P}[A]+\mathrm{P}[\tilde{A} \cap B]$
$=\mathrm{P}[A]+\mathrm{P}[\tilde{A}] \mathrm{P}[B \mid \tilde{A}]$ (general multiplication law)
$=.8+.2 \times .20=.80+.04=.84$

Yet another approach is to use the general addition law of probability,
$\mathrm{P}[A \cup B]=\mathrm{P}[A]+\mathrm{P}[B]-\mathrm{P}[A \cap B]$
and then the general multiplication law of probability,
$\mathrm{P}[A \cup B]=\mathrm{P}[A]+\mathrm{P}[B]-\mathrm{P}[A] \mathrm{P}[B \mid A]$
$=.8+.8-.8 \times .95=.8 \times 1.05=.84$

A tree diagram (figure 4) is a good visual method which illustrates the first two methods above for the calculation of $\mathrm{P}[A \bigcup B]$.

Figure 4: Tree diagram for $\mathrm{P}[A \cup B]$

There is therefore a probability of 84% that current will pass through this system.

References

1. https://en.wikipedia.org/wiki/Prosecutor\'s_fallacy, accessed on 2016 Jan. 07.
2. B. Lewis, Taking Perspective (President's Address), Math. Gaz. 87 (November 2003), pp. 422-425.

GLYN GEORGE
Department of Electrical and Computer Engineering,
Memorial University of Newfoundland,
St. John's NL, Canada A1B 3X5
http://www.engr.mun.ca/~ggeorge/
2016 August 04
(Other publications

