88.76 Testing for the independence of three events

In an introductory course in probability, it does not take long to encounter the statement that two events A and B are [stochastically] independent if and only if

$$
\mathrm{P}[A \text { and } B]=\mathrm{P}[A] \times \mathrm{P}[B] .
$$

I have noticed that some students then go on to assume that three events A, B and C are 'independent' if and only if

$$
\begin{equation*}
\mathrm{P}[A \text { and } B \text { and } C]=\mathrm{P}[A] \times \mathrm{P}[B] \times \mathrm{P}[C] \tag{1}
\end{equation*}
$$

The n events $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ are mutually independent if, and only if, for every $k(k=2,3, \ldots, n)$ and every subset $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$ of k distinct values drawn from the set of the first n natural numbers,

$$
\begin{equation*}
\mathrm{P}\left[A_{i_{1}} \cap A_{i_{2}} \cap \ldots \cap A_{i_{k}}\right]=\mathrm{P}\left[A_{i_{1}}\right] \times \mathrm{P}\left[A_{i_{2}}\right] \times \ldots \times \mathrm{P}\left[A_{i_{k}}\right] . \tag{2}
\end{equation*}
$$

Equation (1) is therefore a necessary, but not sufficient, condition for the mutual independence of three events.

An efficient way to cause students to think again about equation (1) is to present the following counterexample:

FIGURE 1
One can soon see that, although

$$
\mathrm{P}[A \text { and } B \text { and } C]=\mathrm{P}[A] \times \mathrm{P}[B] \times \mathrm{P}[C]=.04,
$$

no two of the three events are pair-wise independent:

$$
\begin{array}{ll}
\mathrm{P}[A \text { and } B]=.10, & \text { but } \mathrm{P}[A] \times \mathrm{P}[B]=.2 \times .4=.08 \\
\mathrm{P}[B \text { and } C]=.24, & \text { but } \mathrm{P}[B] \times \mathrm{P}[C]=.4 \times .5=.20 \\
\mathrm{P}[C \text { and } A]=.14, & \text { but } \mathrm{P}[C] \times \mathrm{P}[A]=.5 \times .2=.10
\end{array}
$$

Acknowledgement

I wish to thank an anonymous referee for a suggestion that has improved this note.

