The Integral of $\frac{1}{x}$

by G.H. George

Students meeting the result $\int \frac{1}{x} d x=\ln x+C$ for the first time are often amazed by the fact that a function so unlike x^{n+1} can "fill the gap" at $n=-1$ in the integration of x^{n}. Here we show that $\ln x$ must fill that gap, by examination of the limit of $\int x^{n} d x$ as $n \rightarrow-1$. Consider the function defined by

$$
I(n, b)=\int_{1}^{b} t^{n} d t, \quad n \neq-1
$$

where b is a positive constant.
The function $I(n, b)$ has a discontinuity at $n=-1$, but everywhere else $I(n, b)=\frac{b^{n+1}-1}{n+1}$ is continuous.

Evaluate a simple Maclaurin series expansion of $I(n, b)$ in x, with $b=1+x$:

$$
\begin{aligned}
& I(n, 1+x)=\frac{(1+x)^{n+1}-1}{n+1}= \\
& \frac{1+\frac{(n+1)}{1} x+\frac{(n+1) n}{2 \times 1} x^{2}+\frac{(n+1) n(n-1)}{3 \times 2 \times 1} x^{3}+\ldots-1}{n+1} \\
& \Rightarrow \quad I(n, 1+x)=x+\frac{n}{2 \times 1} x^{2}+\frac{n(n-1)}{3 \times 2 \times 1} x^{3}+\frac{n(n-1)(n-2)}{4 \times 3 \times 2 \times 1} x^{4}+\ldots \\
& \Rightarrow \quad \lim _{n \rightarrow-1} I(n, 1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots=\ln (1+x)=\ln b
\end{aligned}
$$

An alternative is to use l'Hôpital's rule:
$\lim _{n \rightarrow-1} I(n, b)=\lim _{n \rightarrow-1} \frac{b^{n+1}-1}{n+1} \stackrel{H}{=} \lim _{n \rightarrow-1} \frac{b^{n+1} \ln b-0}{1}=\ln b$
The discontinuity may therefore be removed by redefining $I(n, b)$ to be

$$
I(n, b)=\left\{\begin{array}{cc}
\frac{b^{n+1}-1}{n+1} & (n \neq-1) \\
\ln b & (n=-1)
\end{array}\right.
$$

But $I(n, b)$ was also defined to be $I(n, b)=\int_{1}^{b} x^{n} d x$.
It then follows that $\int_{1}^{b} x^{n} d x \rightarrow[\ln x]_{1}^{b}$ as $n \rightarrow-1$ and $\ln x$ does indeed fill the gap.
A graph of $y(x)=\left\{\begin{array}{cc}\frac{x^{n+1}-1}{n+1} & (n \neq-1) \\ \ln x & (n=-1)\end{array}\right.$ against x for three values of n,
($n=-1.2,-1$ and -0.8), illustrates this limiting behaviour:

I am grateful to an anonymous referee for suggestions that have improved this note and for the following extension to this work.

$$
\begin{aligned}
& \lim _{n \rightarrow-1} \frac{x^{n+1}-1}{n+1}=\ln x \Rightarrow \lim _{m \rightarrow 0} \frac{x^{m}-1}{m}=\ln x \\
& \Rightarrow \lim _{N \rightarrow \infty} N\left(x^{1 / N}-1\right)=\ln x
\end{aligned}
$$

This can be used as the basis of a method for estimating natural logarithms on a basic calculator, using just the square root key and the three arithmetic keys,$- \times,=$:
$2^{a}\left((\sqrt{x})^{a}-1\right) \rightarrow \ln x$ as $a \rightarrow \infty$
For example, to estimate $\ln 3$ (with $a=5$), press ' 3 ', then press the square root key five times to obtain $3^{1 / 2^{5}}=3^{1 / 32}=1.034927767 \ldots$, subtract 1 , then double five times to obtain $1.117688 \ldots$, which is a mediocre estimate of $\ln 3=1.098612288 \ldots$.

Increasing the number of repeated key presses improves the estimate up to a certain point, determined by the level of precision to which floating point numbers are stored in the calculator. Entering ' 3 ' and pressing the square root key ten times on a good modern calculator produces $3^{1 / 2^{10}}=3^{1 / 1024}=1.001073439 \ldots$. Subtract 1 , then double ten times to obtain $1.099201830 \ldots$, which is $\ln 3$ correct to four significant figures. I still use a Casio fx-120 calculator from 1978, which possesses a much lower level of precision. Application of this procedure (with $a=10$) on my old calculator produces nearly the same estimate, 1.099200512.

The dependence on the level of precision becomes apparent by $a=20$: From a good modern calculator, the estimate of $\ln 3$ is $1.098612864 \ldots$ (which is correct to eight significant figures), whereas the estimate from my Casio fx-120: is 1.096810 496, (which is less accurate than the $a=10$ case).

GLYN GEORGE

Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, Canada, A1C 2N8
e-mail: glyn@mun.ca
web site: www.engr.mun.ca/~ggeorge

Back to the List of Publications

