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Parallel probabilities

GLYN GEORGE

Introduction 
After several yearsof teaching an introduction to probability and

statisticsfor engineeringdegreestudents,my attentionhasbeencapturedby
some variations on the familiar general addition law of probability.
Network analysis of componentsconnectedin parallel is one of many
applications. 

To evaluate , it is sufficient to havevaluesfor ,
and the conditionalprobability (or ). The evaluationis
very easy:

P[A ∪ B] P[A] P[B]
P[A | B] P[B | A]

P[A ∪ B] = P[A] + P[A] − P[A ∩ B] = P[A] + P[B] − P[A | B] × P[B] .

There may be situationswhere the only direct information involves
three of the conditional probabilities , , ,

(or their complements). Under those circumstances,the
calculation of requiresmore thoughtand providedmotivation
for this Article.

P[A | B] P[A | B̃] P[B | A]
P[B | Ã]

P[A ∪ B]

In a simple analysis of network reliability, componentscan be
connectedin series or in parallel. Examples of networks are the
transmissionof a signalor an electriccurrentbetweentwo points,and the
flow of fluid through pumping stations from one point to another.

We shall takethe binary case;eithera componentis working normally
or it hasfailed completely. A further simplification is to consideridentical
components only.

Connection in series
All componentsthatareconnectedin seriesmust workin orderfor that

subsystem to work.

X A B Y

FIGURE 1:   Two components connected in series

Let representthe (unconditional)probability thatcomponentE is
working. With identical components, . Let this common
probabilitybe representedby . Theprobability of successfultransmission
for thesetwo componentsconnectedin seriesis . By thegeneral
multiplication law of probability,

P[E]
P[A] = P[B]

p
P[A ∩ B]

P[A ∩ B] = P[A] × P[B | A] .

It is reasonableto assumethat the reliabilities of identical components
connectedin series areindependent. Then the probability of successful
transmission is

P[A ∩ B] = P[A] × P[A] = p2.
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Connection in parallel
Only one componentin a set connectedin parallel needsto work in

order for the subsystem to work.

X Y
C

D

FIGURE 2:   Two components connected in parallel

The probability of successfultransmissionfor thesetwo components
connected in parallel is .P[C ∪ D]

By the general addition law of probability, 

P[C ∪ D] = P[C] + P[D] − P[C ∩ D] .

By the general multiplication law of probability,

P[C ∩ D] = P[C] × P[D | C] .

If one can assumeindependenceof the reliabilities of thesecomponents,
then 

P[C ∪ D] = P[C] + P[D] − P[C] × P[D] .

With identical components, .   ThenP[C] = P[D] = p

P[C ∪ D] = 2p − p2 = p(2 − p) . (1)

But the assumptionof independenceis muchmore questionablein the
caseof connectionin parallel than it is in the caseof connectionin series.
In the fluid flow context, if onepumpingstationfails, then that putsmore
loadon the otherpumpingstation,which may increasethe likelihood of its
failure. The calculation of based on the unconditional
probabilities is no longer valid.

P[C ∪ D]

Let the (conditional)probability that onecomponentworks given that
the other component is working be 

P[D | C] = P[C | D] = a.

Knowledgethatonecomponentis working mayenhancetheprobabilitythat
the other component is working, so that .a > p

Let the probability that one componentworks given that the other
component has failed be

P[D | C̃] = P[C | D̃] = b.

Failureof onecomponentmayput morestrainon theothercomponent,
so that . In most systems,neither failure nor successwill be
absolutely certain. The reasonableassumption then follows that

.

b < p

0 < b < p < a < 1
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Then P[C ∩ D] = P[C] × P[D | C] = P[D] × P[C | D]

⇒ P[C] × a = P[D] × a.

Equality of the conditional probabilities therefore
forces equality of the unconditional probabilities .

P[D | C] = P[C | D]
P[D] = P[C] = p

P[C ∩ D̃] = P[C] × P[D̃ | C] = P[D̃] × P[C | D̃]

⇒ p(1 − a) = (1 − p) b ⇒ (1 − a + b) p = b

⇒  p = P[C] = P[D] =
b

1 − (a − b)
. (2)

Note that one has a free choice of only two of , and
. Having chosenthe value of any two of theseprobabilities, (2)

determines the value of the third probability.

P[D | C] P[D | C̃]
P[D]

P[C̃] = 1 − p = 1 −
b

1 − (a − b)
=

1 − (a − b) − b

1 − (a − b)
=

1 − a

1 − (a − b)
.

P[C̃ ∩ D̃] = P[C̃] × P[D̃ | C̃] = (1 − p)(1 − b)

=
(1 − a)(1 − b)

1 − (a − b)
=

1 − a − b + ab

1 − a + b
.

The probability that the parallel subsystem works is therefore
 (de Morgan’s laws)

CD
P[C ∪ D] = 1 − P[∼ (C ∪ D)] = 1 − P[C̃ ∩ D̃]

= 1 −
1 − a − b + ab

1 − a + b
=

1 − a + b − (1 − a − b + ab)

1 − (a − b)
=

2b − ab

1 − (a − b)
.

Therefore

P[C ∪ D] =
b (2 − a)

1 − (a − b)

or

P[C ∪ D] =
P[D | C̃] (2 − P[D | C])

1 − (P[D | C] − P[D | C̃])
or

P[C ∪ D] =
P[D | C̃] (1 + P[D̃ | C])

1 − (P[D | ∼C] + P[∼D | C])
. (3)

Figure3 illustratesthe functional relationshipbetween and
thetwo conditionalprobabilities and , on the
domain .   This plot is available from 

P[C ∪ D]
a = P[D | C] b = P[D | C̃]

0 < b < a < 1
http://www.engr.mun.ca/~ggeorge/parallelProb.mw .

Whenviewed in the appropriategraphicalsoftwarepackage,onecan view
the plot from any desired direction.
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FIGURE 3:   Plot of  against  and P[C ∪ D] P[D | C] P[D | C̃]

In the case of independence,  and (3) reduces to a = b = p

P[C ∪ D] =
p(2 − p)

1 − 0
(which is (1)).

Oneconsequenceof equations(2) and(3) is the well-knownresultthat
the probability of a subsystemin parallel working is greater than the
unconditional probability of an individual component working:

P[C ∪ D] − P[C] =
b (2 − a)

1 − (a − b)
−

b
1 − (a − b)

=
b (2 − a − 1)

1 − (a − b)
=

b (1 − a)

1 − (a − b)
> 0

for all ,  such that .a b 0 < b < a < 1
Thegeneraladditionand multiplicationlaws of probabilityalso leadto

this result, for any pair of possible events , :A B

P[A ∪ B] − P[A] = P[B] − P[A∩ B] = P[B] − P[B] × P[A | B]

= P[B] (1 − P[A | B]) ≥ 0
(with equality only if  is a subset of ).B A
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Example 1
Supposethat eachcomponentworks 90% of the time when the other

componentis working,but only 50%of the time whentheothercomponent
has failed.   Then, from equations (2) and (3), 

a = 0.9, b = 0.5 ⇒ p =
0.5

1 − (0.9 − 0.5)
=

5
6

and

P[C ∪ D] =
0.5(2 − 0.9)

1 − (0.9 − 0.5)
=

0.5 × 1.1

1 − 0.4
=

55

60
=

11

12
.

This subsystem therefore works more than 91% of the time.
Figure 4 illustrates the Venn diagram for this example.

C D

1

12

1

12
1
12

3

4

S

FIGURE 4: Venn diagram for Example 1

One interesting question inspired by this example is:
Underwhat circumstancesis the probability of the subsystem
working greater than the conditional probability that one
component works given that the other component works?   

Put more concisely, when is ?P[C ∪ D] > P[D | C]

P[C ∪ D] − P[D | C] =
b(2 − a)

1 − (a − b)
− a =

b(2 − a) − a(1 − (a− b))

1 − (a− b)
.

The numerator is

2b − ab − a (1 − a) − ab = 2b − 2ab − a(1 − a)

= 2b(1 − a) − a (1 − a) = (2b − 1) (1 − a) .

The numerator will be positive only if .2b > a
Provided ,P[D | C] < 1

P[C ∪ D] > P[D | C] if, and only if,P[D | C̃] > 1
2 P[D | C] (4)

which is the case in Example 1.

Example 2
As anexampleof thecasewhen , supposethat

each componentworks 80% of the time when the other componentis
working, but only 30% of the time when the other componenthasfailed.

P[C ∪ D] < P[D | C]
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Then, from (2) and (3),

a = 0.8, b = 0.3 ⇒ p =
0.3

1 − (0.8 − 0.3)
=

3
5

= 0.6

and

P[C ∪ D] =
0.3(2 − 0.8)

1 − (0.8 − 0.3)
=

0.3 × 1.2
0.5

=
36
50

=
18
25

= 0.72.

This subsystemthereforeworks 72% of the time, which is less than
 (but greater than , as it must be).P[D | C] P[D]

C D
S

0.12 0.120.48

0.28

FIGURE 5: Venn diagram for Example 2

Example 3
Supposethatthetwo conditionalprobabilitiesareequallyspacedaround

0.5.  Then  andb = 1 − a

p =
1 − a

1 − (a − (1 − a))
=

1
2

so that successand failure are equally likely for eachcomponentin the
absence of knowledge of the status of the other component.

P[C ∪ D] =
(1 − a) (2 − a)

1 − (a − (1 − a))
=

2 − a
2

=
2 − (1 − b)

2

so that

P[C ∪ D] = 1 − 1
2 P[D | C] = 1

2 + 1
2 P[D | C̃] . (5)

One extreme case occurs when , so that the
components are independent and  (consistent with (1)).

a = b = p = 1
2

P[C ∪ D] = 3
4

The other extremecaseis when failure of one componentguarantees
failure of theother andsuccessof onecomponentguaranteessuccessof the
other (perfectcorrelation, ). Equation(3) is indeterminate,
which leadsto thegapin theplot at in Figure 3. Using(5) (or
the limit for (3)) showsthat tendsto 0.5 (successand failure
equallylikely), but events and aremutually exclusive(asdependentas
possible). In a Venndiagram, and arethesameset. Examiningvalues
close to this extreme case, , , (2) and (3) lead to

 and .

a = 1, b = 0
a = 1, b = 0

P[C ∪ D]
C D̃

C D
a = 0.999 b = 0.001

p = P[C] = P[D] = 0.5 P[C ∪ D] = 0.5005
For all other cases in between these two extremes, .1

2 < P[C ∪ D] < 3
4
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Also, from (4),  requires .P[C ∪ D] > P[D | C] b > 1
2a

With the additional constraint that , this condition becomesb = 1 − a

1 − a >
a

2
⇒ 1 >

3a

2
⇒ a <

2

3
.

Therefore,in the casewhere the two conditionalprobabilitiesare equally
spaced around 0.5,  requires .P[C ∪ D] > P[D | C] 1

2 ≤ P[D | C] < 2
3

Non-identical components in parallel
We can also deduce anexpressionfor , in terms of the

conditional probabilities only, in the more general case where the two
components are not identical, so that and

. However,the algebrais messier! To render the
algebrasomewhateasierto follow, we use the following abbreviations:

, , , , ,
.

P[C ∪ D]

P[D | C] ≠ P[C | D]
P[D | C̃] ≠ P[C | D̃]

c = P[C] d = P[D] r = P[C | D] s = P[C | D̃] t = P[D | C]
u = P[D | C̃]

The total probability partitions into four exhaustive and mutually
exclusive probabilities which, by the general multiplication law of
probability, are

P[C ∩ D] = ct = dr,  P[C̃ ∩ D] = c̃u = dr˜ ,

P[C ∩ D̃] = ct˜ = d̃s,  P[C̃ ∩ D̄] = c̃ũ = d̃s˜ , (6)

from which  and c = c (t + t˜ ) = dr + d̃s d = d (r + r˜ ) = ct + c̃u

c = dr + d̃s ⇒ dr = ct = (dr + d̃s) t

⇒ dr = drt + (1 − d)st ⇒ d(r − rt + st) = st ⇒ d =
st

rt˜ + st
. (7)

In a similar way, the two unconditional probabilities can then be
expressedin terms of the four conditional probabilities and their
complements, each in four equivalent ways:

P[C] = c =
ru

ru + r˜ t
=

sũ
sũ + s˜ t˜

=
rs

st + rt˜
=

rs̃u + r˜ sũ
s˜ u + r˜ ũ

and

P[D] = d =
st

st + rt˜
=

s˜ u

s˜ u + r˜ ũ
=

tu

r˜ t + ru
=

s˜ t˜ u + stũ

s˜ t˜ + sũ
. (8)

These equations place one constraint on the values of .r , s, t, u

st

st + rt˜
=

s˜ u

s˜ u + r˜ ũ
⇒ st (s˜ u + r˜ ũ) = s˜ u (st + r t˜ )

⇒ ss˜ tu + r˜ stũ = ss˜ tu + rs˜ t˜ u ⇒ r˜ st (1 − u) = rs̃t˜ u

⇒ r˜ st = rs̃t˜ u + r˜ stu ⇒ u =
r˜ st

r˜ st + rs˜ t˜
. (9)
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Having chosen values for , and
, there is no freedom of choice for .

r = P[C | D] s = P[C | D̃]
t = P[D | C] u = P[D | C̃]

There are several ways to obtain , includingP[C ∪ D]

P[C ∪ D] = P[C] + P[C̃ ∩ D] = c + dr˜ (from (6))

and from equation (8),

P[C ∪ D] =
rs

st + rt˜
+

st
st + rt˜

× r¯ =
s(r + r˜ t)
st + rt˜

.

Therefore

P[C ∪ D] =
P[C | D̃] × (P[C | D] + P[C̃ | D] × P[D | C])
P[C | D̃] × P[D | C] + P[C | D] × P[D̃ | C]

. (10)

Example 4

P[C | D] = 0.90. P[C | D̃] = 0.75 andP[D | C] = 0.50.

Equation (9) ⇒

P[D | C̃] =
0.10× 0.75× 0.50

0.10× 0.75× 0.50+ 0.90× 0.25× 0.50
=

0.0375

0.1500
= 0.25.

Equation (8) ⇒ P[C] =
0.90× 0.75

0.75× 0.50+ 0.90× 0.50
=

0.675

0.825
=

9

11
= 0.8̇1˙

and P[D] =
0.75× 0.50

0.75× 0.50+ 0.90× 0.50
=

0.375
0.825

=
5

11
= 0.4̇5˙ .

Equation (10) ⇒

P[C ∪ D] =
0.75(0.90+ 0.10× 0.50)

0.75× 0.50+ 0.90× 0.50
=

0.7125
0.8250

=
19
22

= 0.863˙ 6˙ .

While this is greater than ,  and , it is less than .P[C] P[D] P[D | C] P[C | D]

C D

1

22
3
22

S

9

22
9
22

FIGURE 6: Venn diagram for Example 4

When is  ?P[C ∪ D] > max(P[D | C] , P[C | D])

P[C ∪ D] > P[D | C] ⇒
s(r + r˜ t)

st + r t˜
> t

⇒ s(r + r˜ t) > t (st + rt˜ ) ⇒ rs + r˜ st > st2 + rtt˜

⇒ s(r + r˜ t − t2) > rtt˜ ⇒ s >
r tt˜

r + r˜ t − t2
.
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But r + r˜ t − t2 = r + t − rt − t2 = r (1 − t) + t (1 − t) = (r + t)t˜

⇒ s >
rt

r + t
and

P[C ∪ D] > P[C | D] ⇒
s(r + r˜ t)
st + rt˜

> r

⇒ s(r + r˜ t) > r (st + rt˜ ) ⇒ rs + r˜ st > rst + rr t˜

⇒ s(r + r˜ t − r t) > rr t˜ ⇒ s >
r2t˜

r + r˜ t − rt
.

But r + r˜ t − rt = r (1 − t) + r˜ t = rt˜ + r˜ t

⇒ s >
r2t˜

rt˜ + r˜ t
.

Therefore  when P[C ∪ D] > max(P[D | C] , P[C | D])

P[C | D̃] > max(P[C | D] × P[D | C]
P[C | D] + P[D | C]

,

(P[C | D])2 × P[D̃ | C]
P[C | D] × P[D̃ | C] + P[C̃ | D] × P[D | C] ) . (11)

Obviouslythis is nowherenearaselegantasthecondition (4)in thecaseof
identical components.

Identical components
In thecasewhenthecomponentsareidentical(interchangeable),

and .   Equation (8) becomes 
r = t

s = u

c =
tu

tu + t˜ t
=

uu˜

uu˜ + ũt˜
=

ut
ut + tt˜

=
tũu + t˜ uu˜

ũu + t˜ ũ
and

d =
ut

ut + tt˜
=

ũu

ũu + t˜ ũ
=

tu

t˜ t + tu
=

ũt˜ u + utũ

ũt˜ + uu˜
and all eight expressions in (8) simplify to 

c = d =
u

u + t˜
=

P[D | C̃]
P[D | C̃] + P[D̃ | C]

,

which is (2).

Equation (10) becomes 

P[C ∪ D] =
u (t + t˜ t)

ut + tt˜
=

ut (1 + t˜ )

t (u + t˜ )
=

u (1 + t˜ )

u + t˜

⇒ P[C ∪ D] =
P[D | C̃] × (1 + P[D̃ | C])

P[D | C̃] + P[D̃ | C]
which recovers (3) above.
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Equation (11) reduces to (4):

r = t ⇒
r t

r + t
=

t2

t + t
=

t
2

and
r2t˜

r t˜ + r˜ t
=

t2t˜

tt˜ + t˜ t
=

t
2

.

An Excel spreadsheetto calculate directly from the three
conditional probabilities , and can be
downloaded from

P[C ∪ D]
P[C | D] P[C | D̃] P[D | C]

http://www.engr.mun.ca/~ggeorge/Parallels.xlsx 

Conclusion
The main contributionshereare(10) (andits specialcase(3)), relating

directly to theconditionalprobabilities , and
only, and (4), providing the condition, in the caseof identical

components, for  to exceed .

P[C ∪ D] P[C | D] P[C | D̃]
P[D | C]

P[C ∪ D] P[D | C]
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