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This paper presents a general approach for developing a test of the promotion criteria in a typical engineering 
programme.   As an illustration we describe some mathematical models which could be used to predict a person’s 
probability of succeeding in Memorial University's engineering programme based on performance in an early term 
in the programme.   Logistic regression is employed due to the binary nature of the response variable (whether or 
not graduation occurs after 5 years).   Multiple logistic regression on the grades obtained in various courses 
provides little additional predictive power over a simple logistic regression on the early term's average grade.  The 
results appear to support the faculty's choice of minimum average term grade for promotion to the next term in the 
programme. 

INTRODUCTION 

IN ANY academic programme a measure of a 
student's ability is required.   If possible the 
student's aptness for a specific discipline should be 
determined. The idea is a general approach to the 
quantification of a student's ability through the 
development of probability models.   With such a 
model you can determine the likelihood of a person 
succeeding in his or her chosen discipline. This 
article deals with the application of this approach 
to the engineering programme at Memorial Uni-
versity. 

The engineering programme at Memorial Uni-
versity of Newfoundland consists of eight 
academic terms, the first two of which are common 
to all disciplines of engineering and six work terms 
during which the students are placed with an 
employer to gain greater experience in the field of 
their choice. 

In 1992, one of us employed an engineering 
work term student to investigate the relationship 
between success in graduating from the engineer-
ing programme on time (no more than 5 years after 
starting in the programme) and performance in the 
university courses required of Newfoundland 
students prior to their entry to the engineering
programme [1]. 

Subsequently, the authors set out to develop 
some sort of means for predicting the chances of 
graduating from Memorial University's engineering 
programme in 4, 5 and 6 years after completion of 
academic term 2 for the first time.     Our ultimate 

task was to provide the Faculty of Engineering 
with information to assist in determining what 
modifications to the promotion criteria in the 
engineering programme may be needed. 

In 1990 the promotion criteria from academic 
terms 1 and 2 were modified.   Until this time the 
two terms were viewed as a unit with promotion to 
term 3 requiring an overall average of 60% 
between the two terms.   Now the first two terms 
are viewed individually with promotion from each 
term requiring a 60% average and a grade of at 
least 50% in each course.   One will therefore be 
able to use the information contained within the 
original report [2] in the future to compare success 
rates before and after the change in the 
programme's structure. 

THE DATA 
Considering the nature of the problem, the most 

obvious variables to include are the grades of the 
person under consideration. It would seem logical 
to assume that the higher a person's grades the 
better the chance of succeeding in their chosen 
discipline. Other factors such as age, marital status, 
financial resources, life-style, number of depen-
dents, etc., may or may not have a measurable 
influence on a person's chance of success.   While 
it would be worthwhile to consider these variables, 
the task presented to us was specifically to be 
based on grades and nothing else. As such the 
analysis deals only with the purely academic side 
of the problem.  The variables used were the marks 
from the seven courses completed in term 2 and 
the average of these seven marks. 
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The important thing to remember in this kind of 
study is to use the most recent data available. The 
models desired by the associate dean were to 
describe a person's probability of graduating in 4, 5 
or 6 years after completing the first two academic 
terms of the engineering programme. Four years is 
the shortest time in which the remainder of the 
programme can be completed. Because of this the 
models were developed using the marks of the 
students in term 2 of the engineering programme in 
1985 and tested using the term 2 marks of the 
students completing this term in 1986. Unfor-
tunately, a consequence is that the resulting model 
applies only to those students who completed term 2 
before the change in 1990. These were the most 
recent data available. 

Several criteria were used in determining whom 
to include in the design and test data sets. The 
models were intended to predict the chance of 
success for a person completing term 2 for the first 
time.   Anyone repeating the term in either of the 
two sets of data was excluded. Due to the set-up of 
the university’s computer system, any marks 
obtained by a person prior to 1980 were not 
available. Since it would be impossible to determine 
whether they were repeating the term, those who 
registered as students in the university prior to 1980 
were excluded from the analysis. There were a few 
cases for which no grades were available - they 
were also left out of the study. Finally, anyone who
dropped out of the programme with clear standing 
was also left out. Many of them did not fail any 
term on their path to graduation and cannot be 
counted as failures. The main consideration here is 
to acquire as much data as possible without biasing 
the model or treating students unfairly. 
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requires the response variable to be binary. (Note: 
for people familiar with matrix notation, in the 
equation above, β is the vector of coefficients and X
is the row matrix of regressors ('independent' 
variables).) While the values of the various Xi s have 
been collected and are known, the values of the βi s
are generally unknown. The problem is to determine 
the values of the coefficients such that the 
differences between the resultant model or LRF and 
the actual values for the dependent variables are 
minimized. 

The amount of mathematical computation 
required to determine the βi s is considerable. This is 
why the BMDP statistical software package was 
used in the analysis. There are several features of 
this program which are relevant to the discussion at 
this point. These include the stepwise regression 
procedure, the p-values-to-enter/remove and the 
C.C. Brown and Hosmer-Lemeshow goodness-of-fit 
tests.   The features to be discussed at this point are 
located at the beginning of each step in the program 
output. 

The BMDP program develops models in a 
stepwise fashion. This means it enters the inde-
pendent variables into the model according to their 
significance, that is, the most significant variable is 
entered into the model first, then the next most 
significant, etc. At each step the program calculates 
the coefficients of the variables in the model at that 
point and various other relevant statistics. It then 
recalculates the significance of the terms not in the 
model. The significance is measured by the vari-
able's p-value and its chi-squared value, given in the 
table of 'Statistics to Enter and Remove Terms' at 
the beginning of each step in the program. A lower 
p-value indicates greater significance for that 
variable compared to the other variables. If two 
terms have the same p-value the term with the 
higher chi-squared value is the more significant. 

The p-values-to-enter/remove determine what 
terms are allowed into the model. At a given step a 
variable is entered into the model if its p-value is 
lower than the p-value-to-enter. In a similar manner 
a term is removed from the model if its p-value at a 
given step is higher than the p-valueto-remove. The 
p-values-to-enter/remove are specified by the 
programmer in the BMDP instruction language 
program. Note that these p-values do not affect the 
output at anyone step - they only limit the number of 
steps in the program. 

The next features of importance are the two 
goodness-of-fit tests mentioned above. The 
‘Hosmer-Lemeshow’ goodness-of-fit test deter-
mines whether the predicted values based on the 
model at this stage in the development fit the data. A 
small p-value here indicates that the predicted 
values do not fit the data. The 'C.C. Brown' 
goodness-of-fit test compares the developed logistic 
model to a more general family of models of which 
the logistic model is a member. A small p-value for 
this test means that the logistic model is 
inappropriate for the data under consideration. 

More complete descriptions of the procedure 

LOGISTIC REGRESSION AND THE BMDP 
PROGRAM 

Logistic regression models were used in the 
analysis. If we use an ordinary linear regression 
equation with several variables the dependent 
(response) variable could have any value. We want 
this value to lie between 0 and 1, because we want 
the probability of graduating for a given set of 
grades. In addition, models designed using regres-
sion analysis are based on data collected for the 
independent and dependent variables. In our case, 
the collected data for the dependent variable has 
two possible values-0 for failure and 1 for success. 
The logistic regression function (LRF), given by 

β β β
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accomplishes both these tasks. It limits the range of 
P( S) to (0, 1) for all values of the Xi s and it also 
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Table 1. R 2 and R  values for the covariates 
 

and related issues can be found in the references 
[2]-[13]. R 2 value Variable R value 

0.66431 
0.71984 
0.78353 
0.78520 
0.82707 
0.51309 
0.62937 

0.99862 

Materials 
Mechanics 
Circuits 
Calculus 
Vectors 
Design 
Elective 

Average 

0.44131 
0.51816 
0.61393 
0.61655 
0.68405 
0.26326 
0.39611 

0.99725 

DEVELOPING THE MODEL 

Preliminary analysis of the grades from 1985 
revealed several interesting features. First of all, 
there tends to be strong multicollinearity among 
regressor variables. In regression analysis multicol-
linearity or intercorrelation among the regressor 
variables tends to have a detrimental effect on the 
regression coefficients and the inferences that can 
be made about them. A correlation value between 
two variables ( denoted rij ) near –l or 1 means that 
there is a high probability that one variable can be 
expressed as a linear function of the other. The 
coefficient of multiple determination, R 2, denotes 
the proportional reduction in the variability of one 
term through the introduction of a set of variables 
into the regression analysis. R 2 values near 1 
indicate a very strong linear relationship between 
one variable and the others in the model. Table 1 
shows the R 2 values between each variable used in 
this analysis, except for 'average' and the other 
variables. 

'Average' was excluded because a linear rela-
tionship is known to exist between it and the other 
seven variables. This is shown by its R 2 value in 
Table 1. (These figures were obtained using BMD 
P Program '6R Partial Correlation and Multivariate 
Regression' to regress average on the seven other 
variables.) Note the high correlation between 
average and the seven courses (the slight deviation 
from a value of 1 is caused by rounding error in the 
recorded value for average in the data file). This is 
expected since average is computed from the other 
variables. 

The value of R ranges in value from −1 to 1. 
Values of R >0.7 or <−0.7 indicate that approxi-
mately half of the variability in the dependent 
variable is explained by the independent variables. 
This is indicative of a possible linear relationship 
between the dependent and independent variables. 
Table 1 shows high R values for mechanics, 
circuits, calculus and vectors. These large values 
indicate strong correlations among the independent 
variables in all of the graduation models. This 
means that multicollinearity exists among the 
regressor variables (i.e. average, materials, mech-
anics, etc. ). 

As further evidence of this is the failure of the 
tolerance test in latter steps of the logistic regres-
sion models. This test eliminates variables from 
the model that are too highly correlated with the 
other independent variables or covariates. The 
BMDP Logistic Regression program uses a default 
tolerance value of 0.0001. If (1− R 2) among one 
variable and the other regressor variables is less 
than the tolerance value then the variable is 
excluded from the model because of its high 
multiple correlation. When the p-values-to-enter/ 
remove were relaxed (i.e. increased) more 
variables (thus more steps) were allowed into the 
model. The nature of the R calculation is such that 
entering more variables always increases the 
multiple correlation of a variable in the model. The 
ultimate result of this was that the majority of 
terms allowed into the model at earlier steps failed 
the tolerance test in later steps. This is more 
evidence of multicollinearity among the covariates. 
There are also several informal tests for the 
presence of intercorrelation. Large changes in the 
estimated regression coefficients from one step to 
the next, regression coefficients with algebraic 
signs the opposite of what is logically expected 
and large coefficients of simple correlation 
between the independent variables are all 
indicative of serious multicollinearity. This would 
account for the high multiple correlations among 
the covariates and the high simple correlations 
between 'average' and some of the other terms. The 
simple correlations are shown in the correlation 
matrix of the regressor variables in Table 2. 

Because of the high correlation between 'aver-
age' and the rest of the independent variables, this 
term was excluded from further multivariate analy-
sis. New models 'were developed using only the 
seven course variables. In the first three steps of 

Table 2. Correlation matrix of the regression variables 

Variable Materials Mechanics Circuits Calculus Vectors Design AverageElective 

1.000        
0.530 1.000       
0.610 0.641 1.000      
0.406 0.495 0.534 1.000     
0.445 0.568 0.605 0.776 1.000    
0.406 0.396 0.351 0.086 0.147 1.000   
0.406 0.400 0.578 0.425 0.527 0.274 1.000  
0.714 0.820 0.862 0.746 0.808 0.453 0.682 1.000

Materials 
Mechanics 
Circuits 
Calculus 
Vectors 
Design 
Elective 
Average 
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each of the new models all coefficients are positive 
and there is a reasonable degree of fit between the 
predicted and observed values. However, the 
standard errors of the regression coefficients 
increase as more terms are entered into the models. 
This means the probability that the estimated 
regression coefficients are close to the true regres-
sion coefficients is reduced. Additional problems, 
such as the failure of the tolerance tests, lack of fit 
and high correlations among regression coeffici-
ents were encountered despite the exclusion of the 
average term. All of these factors are indicative of 
strong multicollinearity among the covariates. 
Because of this only the first three steps of each 
model were used in the testing procedure described 
below. This makes the testing somewhat simpler 
while eliminating a lot of the problems listed 
above. Multicollinearity among grades will 
generally be impossible to avoid. 

the specified time was computed using the corres-
ponding models. These probabilities were then 
summed for the entire class to give the expected 
number of graduates for each model. This follows 
from 

for binary responses, where E (X) is the expected 
value of X, n is the number of cases and P(Xi) is the 
probability of success for Xi . 

The relative error for each model can then be 
calculated according to the formula 

        ( ) (
( )

)

Relative error

actual # grads expected # grads

actual # grads

=

−  

 
and multiplied by 100 to be expressed as a per-
centage. The model with the smallest relative error 
would be the most accurate predictor of the 
probability of succeeding in the engineering pro-
gram. It is advisable in research of this nature to 
continuously test models with new data. This may 
reveal that the test data or the data used to design 
the model was an atypical group of people for this 
kind of analysis. 

One could also work backwards through your 
models to find a required grade given a certain 
probability of graduating. When this was done for 
a probability of 50% (when you have just as much 
chance as failing as passing) the required averages 
were all approximately 60%. This lends support to 
the current policy at Memorial University of 
requiring a 60% average for promotion to term 2. 

The model developed using data from the class 
which completed term 2 in 1985 was tested on data 
from the class which completed term 2 in 1986. 
The results for all 12 models are displayed in Table 
4. 

 

THE TESTING PROCEDURE 

The models were tested using the term 2 marks of 
the students at this stage of the programme in the 
winter of 1986. For each year of graduation four 
models were tested-one containing only the variable 
'average' and one for each of the first three steps of 
the new models. The βi s for each of the models are 
shown in Table 3. In this figure, βo is the constant in 
the logistic regression function and the variable 
entered at each step is indicated in parentheses at 
that step. Each βi  corresponds to the ith term entered 
into the model and is the coefficient of that term. For 
example, in step 1 of the 4 year graduation model 
'circuits' was entered with a coefficient of β1 = 
0.1727. In step 2 'materials' was entered with a 
coefficient of β2  = 0.1378 while 'circuits' now has a 
coefficient of β3  = 0.1634. 

The probability of each person graduating within 

Table 3. The logistic regression models tested 

β0 β1 
 

β2 
 

β3 Model 

0.3638 
0.1727 
0.1634 
0.1426 
0.3450 
0.1713 
0.1256 
0.1093 
0.3076 
0.1896 
0.1982 
0.1425

Four year: average 
Step 1 (circuits) 
Step 2 (materials) 
Step 3 (vectors) 

Five year: average 
Step 1 (circuits) 
Step 2 (calculus) 
Step 3 (materials) 

Six year: average 
Step 1 (circuits) 
Step 2 (design) 
Step 3 (calculus) 

-23.69  
-9.072  
-16.58  
-29.13  
-21.59  
-8.202  
-16.32  
-20.95  
-18.20  
-8.145  
-17.63  
-12.77 

0.1378 
0.1886 0.14260

0.1563 
0.1550 0.09532

0.1258 
0.1464 0.09615

β0 is the constant. Subscripts of the βi s indicate the step at which the corresponding term was 
entered. 
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Table 4. Actual and predicted numbers of graduates for each model (students completing 

term 2 in 1986)
 

 Relative error 
(%) 

Predicted 
number of 
graduates

Actual 
number of 
graduates

Model 
 

 
 

5 
38 
 35 

1 
9 

11 
3 
5 
4 

10 
11 

7

67 
67 
67 
67 
87 
87 
87 
87 
91 
91 
91 
91 

Four year model: average 
Step 1  
Step 2  
Step 3 

Five year model: average 
Step 1  
Step 2  
Step 3 

Six year model: average 
Step l  
Step 2 
Step 3 

70.4 
92.7 
90.6 
67.9 
78.8 
96.8 
84.4 
82,4 
87.5 

100.0 
101.4 
97.4 
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and actual numbers of graduates for the 1986 term 2 
class can be found in Table 4. With 'average' as the 
sole regressor, the error remained below 10%. 
Replacing average by the set of individual course 
grades produced errors ranging from 1 to 38% 
across the various models. 

We also recommend looking at the influence the 
other factors mentioned above (i.e. finances, 
children, etc.) may have on a person's chances of 
graduating. 

It appears that logistic regression serves well for 
the task of modelling success in Memorial Uni-
versity's engineering programme. 

CONCLUSIONS 

One logistic regression model for the probability of 
graduating on time from the BEng programme at 
Memorial University given a term 2 average of x is 

This leads to a prediction of 70.4 graduates (on time) 
for the class completing term 2 in 1986. The actual 
number graduating on time for that class is 67, an 
error of 5%. 

Similar expressions for the probability of grad-
uating no more than 5 years and no more than 6 years 
after completion of term 2 can be obtained from Table 
3. The comparison between predicted 
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