Eigenvalues and Eigenvectors for 2×2 Matrices

Let the general 2×2 matrix be $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \implies \det A = ad - bc$. Define $D = (a-d)^2 + 4bc$ The eigenvalues of the matrix A are $\lambda = \frac{(a+d) \pm \sqrt{D}}{2}$ (for any choices of a, b, c, d) Proof:

The characteristic equation is det
$$(\lambda I - A) = 0$$
 \Rightarrow $\begin{vmatrix} \lambda - a & -b \\ -c & \lambda -d \end{vmatrix} = 0$
 $\Rightarrow (\lambda - a)(\lambda - d) - bc = 0 \Rightarrow \lambda^2 - (a + d)\lambda + (ad - bc) = 0$
 $\Rightarrow \lambda = \frac{+(a + d) \pm \sqrt{(a + d)^2 - 4(ad - bc)}}{2}$
But $(a + d)^2 - 4(ad - bc) = a^2 + 2ad + d^2 - 4ad + 4bc$
 $= a^2 - 2ad + d^2 + 4bc = (a - d)^2 + 4bc = D$

If at least one of b or c is zero, (so that the matrix A is triangular), then the eigenvalues are just the diagonal elements, $\lambda = a$ or d (from $(\lambda - a)(\lambda - d) - bc = 0$ above).

The eigenvectors for the two eigenvalues are found by solving the underdetermined linear system

$$A\vec{\mathbf{x}} = \lambda \vec{\mathbf{x}} \implies (\lambda I - A)\vec{\mathbf{x}} = \vec{\mathbf{0}}$$

Let $\vec{\mathbf{x}} = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$, then $\begin{bmatrix} \lambda - a & -b \\ -c & \lambda - d \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

Various cases arise.

If
$$b = c = 0$$
 (so that the matrix A is diagonal), then:
For $\lambda = a$, $\begin{bmatrix} 0 & 0 \\ 0 & a - d \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies (a - d)\beta = 0$ and an eigenvector is $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$.
For $\lambda = d$, $\begin{bmatrix} d - a & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies (d - a)\alpha = 0$ and an eigenvector is $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

 $\frac{\text{If } b = 0 \text{ but } c \neq 0}{\text{For } \lambda = a}, \begin{bmatrix} 0 & 0 \\ -c & a - d \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies (a - d)\beta = c\alpha \text{ and an eigenvector is } \begin{bmatrix} a - d \\ c \end{bmatrix}.$ For $\lambda = d$, $\begin{bmatrix} d - a & 0 \\ -c & 0 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies c\alpha = 0$ and an eigenvector is $\begin{bmatrix} 0 \\ 1 \end{bmatrix}.$

Note that if b = 0, d = a and $c \neq 0$, then there is a single eigenvalue of multiplicity 2 with only one linearly independent eigenvector, so that the matrix A cannot be diagonalized.

$$\frac{\text{If } b \neq 0 \text{ but } c = 0}{\text{For } \lambda = a}, \begin{bmatrix} 0 & -b \\ 0 & a-d \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies b\beta = 0 \text{ and an eigenvector is } \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$

For $\lambda = d$, $\begin{bmatrix} d-a & -b \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies (d-a)\alpha = b\beta$ and an eigenvector is $\begin{bmatrix} b \\ d-a \end{bmatrix}.$

Note that if $b \neq 0$, d = a and c = 0, then there is a single eigenvalue of multiplicity 2 with only one linearly independent eigenvector, so that the matrix A cannot be diagonalized.

If $b \neq 0$ and $c \neq 0$ (so that the matrix A is not triangular), then:

For each eigenvalue
$$\lambda$$
, $\begin{bmatrix} \lambda - a & -b \\ -c & \lambda -d \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies \begin{cases} (\lambda - a)\alpha - b\beta = 0 \\ -c\alpha + (\lambda - d)\beta = 0 \end{cases}$
An eigenvector is $\begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} b \\ \lambda - a \end{bmatrix}$ or $\begin{bmatrix} \lambda - d \\ c \end{bmatrix}$ (which are multiples of each other).

The third case is actually a special case of the fourth and can be absorbed into it, so that If $b \neq 0$ (for any *c*), then:

For each eigenvalue λ , an eigenvector is $\begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} b \\ \lambda - a \end{bmatrix}$.

Similarly, If $c \neq 0$ (for any *b*), then:

For each eigenvalue
$$\lambda$$
, an eigenvector is $\begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \lambda - d \\ c \end{bmatrix}$.

The above can be rearranged for implementation in a spreadsheet (http://www.engr.mun.ca/~ggeorge/programs/MatrixMult.xls).

Flowchart for the eigenvector $\begin{bmatrix} \alpha_1 \\ \beta_1 \end{bmatrix}$ for eigenvalue $\lambda_1 = \frac{(a+d) + \sqrt{D}}{2}$: [Note: if and only if A is triangular, then $\lambda_1 = a$] $\begin{array}{c} yes \\ c = 0 \\ 1 \\ 0 \\ yes \\ d = a \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ c \\ c \\ \end{array}$

Flowchart for the eigenvector $\begin{bmatrix} \alpha_2 \\ \beta_2 \end{bmatrix}$ for eigenvalue $\lambda_2 = \frac{(a+d) - \sqrt{D}}{2}$: [Note: if and only if A is triangular, then $\lambda_2 = d$]

Whenever P^{-1} exists, the matrix $P = \begin{bmatrix} \alpha_1 & \alpha_2 \\ \beta_1 & \beta_2 \end{bmatrix}$ is such that $\Lambda = P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$ (a diagonal matrix).