Eigenvalues and Eigenvectors for $\mathbf{2 \times 2}$ Matrices

Let the general 2×2 matrix be $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \Rightarrow \operatorname{det} A=a d-b c$.
Define $D=(a-d)^{2}+4 b c$
The eigenvalues of the matrix A are $\lambda=\frac{(a+d) \pm \sqrt{D}}{2}$ (for any choices of a, b, c, d) Proof:

The characteristic equation is $\operatorname{det}(\lambda I-A)=0 \quad \Rightarrow\left|\begin{array}{cc}\lambda-a & -b \\ -c & \lambda-d\end{array}\right|=0$
$\Rightarrow \quad(\lambda-a)(\lambda-d)-b c=0 \quad \Rightarrow \quad \lambda^{2}-(a+d) \lambda+(a d-b c)=0$
$\Rightarrow \lambda=\frac{+(a+d) \pm \sqrt{(a+d)^{2}-4(a d-b c)}}{2}$
But $(a+d)^{2}-4(a d-b c)=a^{2}+2 a d+d^{2}-4 a d+4 b c$

$$
=a^{2}-2 a d+d^{2}+4 b c=(a-d)^{2}+4 b c=D
$$

If at least one of b or c is zero, (so that the matrix A is triangular), then the eigenvalues are just the diagonal elements, $\lambda=a$ or d (from $(\lambda-a)(\lambda-d)-b c=0$ above).

The eigenvectors for the two eigenvalues are found by solving the underdetermined linear system
$A \overrightarrow{\mathbf{x}}=\lambda \stackrel{\rightharpoonup}{\mathbf{x}} \quad \Rightarrow \quad(\lambda I-A) \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{0}}$
Let $\overrightarrow{\mathbf{x}}=\left[\begin{array}{l}\alpha \\ \beta\end{array}\right]$, then $\left[\begin{array}{cc}\lambda-a & -b \\ -c & \lambda-d\end{array}\right]\left[\begin{array}{l}\alpha \\ \beta\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
Various cases arise.
If $b=c=0$ (so that the matrix A is diagonal), then:
For $\lambda=a,\left[\begin{array}{cc}0 & 0 \\ 0 & a-d\end{array}\right]\left[\begin{array}{l}\alpha \\ \beta\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right] \Rightarrow(a-d) \beta=0$ and an eigenvector is $\left[\begin{array}{l}1 \\ 0\end{array}\right]$.
For $\lambda=d,\left[\begin{array}{cc}d-a & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}\alpha \\ \beta\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right] \Rightarrow(d-a) \alpha=0$ and an eigenvector is $\left[\begin{array}{l}0 \\ 1\end{array}\right]$.

If $b=0$ but $c \neq 0$ (so that the matrix A is lower triangular but not diagonal), then:
For $\lambda=a,\left[\begin{array}{cc}0 & 0 \\ -c & a-d\end{array}\right]\left[\begin{array}{l}\alpha \\ \beta\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right] \Rightarrow(a-d) \beta=c \alpha$ and an eigenvector is $\left[\begin{array}{c}a-d \\ c\end{array}\right]$.
For $\lambda=d,\left[\begin{array}{cc}d-a & 0 \\ -c & 0\end{array}\right]\left[\begin{array}{l}\alpha \\ \beta\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right] \Rightarrow c \alpha=0$ and an eigenvector is $\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
Note that if $b=0, d=a$ and $c \neq 0$, then there is a single eigenvalue of multiplicity 2 with only one linearly independent eigenvector, so that the matrix A cannot be diagonalized.

If $b \neq 0$ but $c=0$ (so that the matrix A is upper triangular but not diagonal), then:
For $\lambda=a,\left[\begin{array}{cc}0 & -b \\ 0 & a-d\end{array}\right]\left[\begin{array}{l}\alpha \\ \beta\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right] \Rightarrow b \beta=0$ and an eigenvector is $\left[\begin{array}{l}1 \\ 0\end{array}\right]$.
For $\lambda=d,\left[\begin{array}{cc}d-a & -b \\ 0 & 0\end{array}\right]\left[\begin{array}{l}\alpha \\ \beta\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right] \Rightarrow(d-a) \alpha=b \beta$ and an eigenvector is $\left[\begin{array}{c}b \\ d-a\end{array}\right]$.
Note that if $b \neq 0, d=a$ and $c=0$, then there is a single eigenvalue of multiplicity 2 with only one linearly independent eigenvector, so that the matrix A cannot be diagonalized.

If $b \neq 0$ and $c \neq 0$ (so that the matrix A is not triangular), then:
For each eigenvalue $\lambda,\left[\begin{array}{cc}\lambda-a & -b \\ -c & \lambda-d\end{array}\right]\left[\begin{array}{l}\alpha \\ \beta\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right] \Rightarrow\left\{\begin{array}{c}(\lambda-a) \alpha-b \beta=0 \\ -c \alpha+(\lambda-d) \beta=0\end{array}\right.$
An eigenvector is $\left[\begin{array}{l}\alpha \\ \beta\end{array}\right]=\left[\begin{array}{c}b \\ \lambda-a\end{array}\right]$ or $\left[\begin{array}{c}\lambda-d \\ c\end{array}\right]$ (which are multiples of each other).

The third case is actually a special case of the fourth and can be absorbed into it, so that If $b \neq 0$ (for any c), then:

For each eigenvalue λ, an eigenvector is $\left[\begin{array}{l}\alpha \\ \beta\end{array}\right]=\left[\begin{array}{c}b \\ \lambda-a\end{array}\right]$.
Similarly,
If $c \neq 0$ (for any b), then:
For each eigenvalue λ, an eigenvector is $\left[\begin{array}{l}\alpha \\ \beta\end{array}\right]=\left[\begin{array}{c}\lambda-d \\ c\end{array}\right]$.

The above can be rearranged for implementation in a spreadsheet
(http://www.engr.mun.ca/~ggeorge/programs/MatrixMult.xls).
Flowchart for the eigenvector $\left[\begin{array}{c}\alpha_{1} \\ \beta_{1}\end{array}\right]$ for eigenvalue $\lambda_{1}=\frac{(a+d)+\sqrt{D}}{2}$:
[Note: if and only if A is triangular, then $\lambda_{1}=a$]

Flowchart for the eigenvector $\left[\begin{array}{l}\alpha_{2} \\ \beta_{2}\end{array}\right]$ for eigenvalue $\lambda_{2}=\frac{(a+d)-\sqrt{D}}{2}$:
[Note: if and only if A is triangular, then $\lambda_{2}=d$]

Whenever P^{-1} exists, the matrix $P=\left[\begin{array}{cc}\alpha_{1} & \alpha_{2} \\ \beta_{1} & \beta_{2}\end{array}\right]$ is such that $\Lambda=P^{-1} A P=\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right]$ (a diagonal matrix).

