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 Abstract 
 

The evolution of a single trapped ion exhibiting intermittent fluorescence and 
dark periods may be described either as a continuous process, using differential 
rate equations, or discretely, as a Markov process.   The latter models the atom 
as making instantaneous transitions from one energy eigenstate to another, and 
is open to the objection that superpositions of energy states will form which are 
not covered by the Markov process.   The superposition objection is replied to, 
and two new mathematical elements, Markov vectors and Markov matrices, are 
proposed as additions to quantum theory.   The paper concludes by attributing 
the cause of dark periods in the ion’s history to instantaneous transitions in the 
ion itself, rather than to photon detection or other components of measurement. 
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1.  Introduction: shelving and dark periods. 
 
In 1975 Hans Dehmelt, investigating methods of determining the frequency of atomic line 
emissions to a very high standard of accuracy, suggested that an extremely narrow line-width 
would be obtained if a single trapped ion’s electron were driven to a metastable energy level, and 
in Dehmelt’s suggestive word “shelved” there.   
 
Ten years later, Cook and Kimble (1985) proposed that the concept of shelving could be used to 
investigate a problem of theoretical interest: the existence of “quantum jumps”.  A three-level 
atom in the “V” configuration (Cook and Kimble’s figure 1, p. 1023) exhibits resonance 
fluorescence when irradiated by laser light of the appropriate frequency.  The rapid oscillations 
between levels 1 and 3 give the appearance of constant radiation intensity.  But when the weak 
transition is also stimulated the atom has a small probability of moving to level 2: when this 
happens the fluorescence is switched off and the atom enters a dark period.   
 
Cook and Kimble noted that, whereas the detection of a single photon emitted by the weak 
transition is problematic, the beginning and ending of dark periods in the fluorescence is 
detectable by the human eye aided by a 10X magnifying glass.  Their suggestion was therefore 
that dark periods could provide a means of directly observing the instantaneous atomic 
transitions that had been the cause of much discussion between Bohr, Heisenberg and 
Schrödinger. 
 
 
2.  Rate equations for atomic change of state. 
 
The three-level system in the V configuration evolves according to differential equations which 
govern changes in its density matrix (Kimble, Cook and Wells (1986), p. 3191).  The authors 
show that the system is reducible to a two-level system, the first level consisting of a 
combination of levels 1 and 3 when fluorescence is occurring and the electron is oscillating back 
and forth.  The second level is the “shelved” state 2.   
 
Where A (“light”) and B (“dark”) are the levels of the new two-level system, g is the transition 
rate from A to B, h that from B to A, PA(t) is the probability of the system being “light” and 
PB(t) that of being “dark”, the evolution of the fluorescing atom is described by the following 
simple rate equations: 
 

( ) ( ) ( ) ( )A B
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Solution of these simultaneous equations, starting from initial conditions PA(0) = 1, PB(0) = 0, 
yields PA and PB as explicit functions of t: 
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PA(t) starts at 1 and decays asymptotically to  h
g h+

. 

PB(t) starts at 0 and increases asymptotically to  g
g h+

. 

At all times,  PA(t) + PB(t)  =  1. 
 
These rate equations, as well as the density-matrix equations, describe change of state in the 
fluorescing atom as a smooth, continuous process.  The same holds for Itano’s rate equations for 
the evolution of a three-level system in the lambda configuration (levels 1, 2, and 3/4 (=0) of 
fig. 1 of Itano, Bergquist and Wineland (1988), p. 559).  Where γ1, γ2 and γ0 are the decay rates 
of the levels 1, 2 and 0, and f1 and f2 (= 1 – f1) give the branching ratio for the transition from 
level 1 to levels 0 and 2 respectively, the three-level equations (p. 560) are: 
 

01 2
1 1 0 0 2 1 1 2 2 1 1 1 2 2 0 0; ; dPdP dPP P f P P f P P

dt dt dt
Pγ γ γ γ γ γ= − + = − = + − γ   (3) 

 
 
 
 
3.   Discrete, non-continuous atomic evolution. 
 
The evolution of the two-level system described by equations (1) and (2), and of the three-level 
system described by equations (3), is continuous throughout.  Nothing in these equations gives 
any hint of discrete transitions from one state to another, or of the sudden appearance and 
disappearance of dark periods.  Although the rate equations provide answers to questions such as 
“What is the probability that the system is in a dark period at time t?”, they cannot answer 
questions like “What is the probability that a dark period begins at t and ends at t' ?”   To address 
questions of this kind, a mathematical description of the atom’s evolution is needed which is not 
based on differential equations, but introduces instantaneous stochastic changes.  These changes, 
though unpredictable, are subject to strict probabilistic constraints, hence are not arbitrary or 
“chance”. 
 
The need for a stochastic approach is recognized in Cook and Kimble (1985) and in Kimble, 
Cook and Wells (1986).  They note that the rate equations (1) do not describe the discrete 
alternation between light and dark periods of figure 2 of (1985, p. 1023).  Their solution is to 
“adopt a point of view in which time is coarse-grained over intervals which are long compared 
with 1/A1, but short compared with 1/A2”, where 1/A1 and 1/A2 are the residence times in levels 
1 and 2 respectively (1986, p. 3190).  This procedure “converts the temporal variations of the 
strong fluorescence into a classical stochastic process”, so that the atomic fluorescence 
“resembles a classical random telegraph signal”.  
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4.  Sequences of atomic transitions as a Markov process. 
 
Let {S1, S2, ... Sm} be a set of states, which in the case of an atom will be its energy levels, and 
imagine the atom’s optical electron successively occupying these states over a sequence of short 
time intervals Δt1, Δt2, ... of equal duration.   At each interval the atom undergoes a change of 
state or transition (it being understood that the transition may be from a state Si to itself), and 
each possible transition is assigned a probability.   A Markov process differs from a Bernoulli or 
Poisson process in that in a Markov process the probability of the transition Si→Sj in or at the 
end of interval Δtn depends upon the state Si of the system in the interval.   A system undergoing 
a Markov process has a “memory”, but the memory extends only to its current state, not to the 
atom’s previous history. 
 
Once the division of time into intervals of constant length Δt is established, the properties of the 
atomic Markov process are summed up in its transition matrix.  An example for a two-level 
process such as the light/dark alternation of a two-level atomic system is the following 
(Matrix M): 
  
  From: 
  A B 
To:      A 1/2 1/3               (4) 
     B 1/2 2/3 
 
When the system corresponding to Matrix M has run for a while, it settles down into a steady 
state in which the probabilities of finding it in states A and B are 2/5 and 3/5 respectively.  Using 
matrix multiplication, we have that 
 

 
2 21 1

5 52 3 ,
3 31 2

2 3 5 5

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ =
⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 
which is to say that (2/5, 3/5) is the eigenvector of the transition matrix M with eigenvalue 1.  
We return to this topic in section 7 below. 
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5.  Transition matrix for the V configuration. 
 
As an artificial example, consider a fluorescent ion in the V configuration of figure 1 of Cook 
and Kimble (1985).   Let the decay rate of the strong transition 1→3 be 1 per ms, corresponding 
to a natural lifetime of 1 ms, and let the rate for the weak transition 2→3 be 0.125 per ms, 
corresponding to a lifetime of 8 ms.  We choose for the purposes of this example Δt = 4 ms, 
which accords with Kimble, Cook and Wells’ proposal to make time coarse-grained over 
intervals long compared to the strong dwell-time but short compared to the weak dwell-time.  
Where γ is the decay rate, both transitions are subject to the law of exponential decay:  
 
 p(non-decay by time t) = exp(–γ t). 
 
We arrive at the following transition matrix: 
      
 
     1  2 3 
       1 .018  0      .999 
       2    0    .607     .001              (5) 
       3 .982  .393 0 
 
This matrix describes the behaviour of the three-level ion when time is divided into intervals of 
4 ms.  It can be used e.g. to calculate the probability that the ion will enter a dark period at time 
interval Δt25 and remain in it until Δt40, at which time the fluorescence recommences. 
 
What remains to be proved concerning the Markov description of atomic processes is that the 
probabilities of such things as the future occurrence of dark periods of given lengths are stable 
over different choices of Δt.  Thus, for Δt = .04 ms, the probability value for the dark period 
from Δt2500 to Δt4000 should be closely related to the earlier value for Δt25 to Δt40.  In the limit, the 
most accurate probability predictions would presumably result from Markov processes based on 
very short time intervals, possibly of the order of 10-40 sec. 
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6.  The superposition objection. 
 
Although the representation of atomic transitions as Markov processes appears to capture the 
sudden appearance and disappearance of dark periods, there is a powerful objection to the idea 
that the history of an atom can be written as the successive occupancy of discrete states, with 
instantaneous transitions in between.   The objection is that quantum mechanics permits, and on 
occasion requires, the atom to enter into a coherent superposition of discrete energy states (see 
for example Schenzle and Brewer (1986), p. 3128).   If the atom is in a linear combination of 
such states, with complex coefficients, how can it be conceived to jump?   Cook ((1990), p. 365) 
asserts that the formation of coherent superpositions of states in effect “eliminates the 
quantum-jump picture as a useful interpretation of quantum behaviour”. 
 
This objection is a serious one, but it can be answered.   Even if the temporal evolution of the 
atom carries it into a superposition of energy states it can still make discontinuous transitions, 
and an elegant method of calculating the probabilities for it to jump in different ways can be 
constructed.   This method rests on the addition, in quantum theory, of “Markov vectors” and 
“Markov matrices” to the traditional categories of vectors and operators in Hilbert space.   
 
 
 
 
7.  Markov vectors and Markov matrices. 
 
A normalized vector is a vector of unit length; a “Markov” vector is a vector the components of 
which are real non-negative numbers which sum to unity, e.g. (1/2, 1/3, 1/6).   A vector may be a 
Markov vector relative to one basis but not to another: e.g. (1, 0) is not a Markov vector when 
written in a different basis as (1/√2, 1/√2). 
 
To any normalized vector  v = (c1, c2,  ...)  there corresponds a Markov vector   
v+ = (c1c1*, c2c2*, ...), where c* is the complex conjugate of c.  Since v is normalized,  
c1c1* + c2c2* + ...  = 1.  
 
A Markov matrix is a square matrix, each column of which is a Markov vector.   Thus the 
transition matrices (4) and (5) above are Markov matrices, relative to a basis.   It is not difficult 
to generalize the argument in section 4 to show that the product of a Markov matrix and a 
Markov vector is always a Markov vector, and we conjecture that every Markov matrix has, in 
the set of Markov vectors, a unique eigenvector with eigenvalue 1, and no eigenvector with 
eigenvalue other than 1. 
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8.  Resolution of the superposition problem. 
 
In this section we show that superpositions of atomic energy states can be incorporated into 
Markov processes.  Consider an arbitrary linear combination  
 
 v = a1u1 + a2u2 + ... 
 
where | v | = 1 and the basis vectors u1, u2, ... are chosen so that each represents one of the atom’s 
discrete energy levels.   These energy-vectors are orthogonal.   What the vector v represents is an 
atomic state with a complex amplitude a1 of being at energy level u1, an amplitude a2 of being at 
level u2, ... etc.  The Markov vector 
 
 v+ = a1a1*u1 + a2a2*u2 + ... 
 
yields a1a1* as the probability of an atom in state v  being in state 1u , a2a2* as the probability 

of being in state 2u , etc. 
 
To show that atomic transitions of an atom in an arbitrary superposition of energy states can be 
dealt with using Markov methods, consider for simplicity a two-level case.   Let S be an atomic 
system with energy levels A and B, let u1 = (1, 0) represent the state A, and let u2 = (0, 1) 
represent B.   Suppose that the Markov matrix M of section 4 above represents the transition 
probabilities and hence the dynamics of S.   Suppose also that S evolves into a complex 
superposition Ψ of its basis states, where in this example Ψ is (represented by) the normalized 
vector 1/√5(1, 2i).  Then Ψ+ = (1/5, 4/5).  Multiplying the matrix M and Ψ+ together yields the 
following: 

1 4 111 1 1
10 15 302 3 5 .

8 191 2 4 1
2 3 5 10 15 30

⎡ ⎤ ⎡⎡ ⎤ ⎡ ⎤ +
⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥ = =
⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥ +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣

⎤
⎥
⎥
⎦

 

 
We argue that the Markov vector (11/30, 19/30) gives the correct probabilities 11/30 and 19/30 
for the atomic transitions Ψ→A and Ψ→B respectively, using the following reasoning.   We note 
first that 

2
1

1
5uΨ =  and 

2
2

4
5uΨ = , which is to say that the conditional probability of 

the atom being in state A, given that it is in state Ψ, is 1/5, and the probability that it is in B, 
given that it is in Ψ, is 4/5.  p(A|Ψ) = 1/5 and p(B|Ψ) = 4/5.  These probabilities are not transition 
probabilities, but reflect the A and B “aspects” of the superposition Ψ.  
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Secondly, there are two ways or “routes” by which an atom in Ψ can make the probabilistic 
transition to A.   Either the “A-aspect” of Ψ makes the transition to A, or the “B-aspect” does.  
The probability for the atom to follow the first route is obtained by multiplying p(A|Ψ) by the 
transition probability p(A→A), i.e. 1/5 × 1/2 = 1/10.   The probability of the second route is 
p(B|Ψ) × p(B→A) = 4/5 × 1/3 = 4/15.   Since the two routes are mutually exclusive, we add 1/10 
and 4/15 to get the total probability 11/30 of an atom in state Ψ jumping to A, i.e. for the 
transition Ψ→A.   Similar calculations yield 19/30 for p(Ψ→B).   These are precisely the values 
assigned these transitions by the Markov vector (11/30, 19/30). 
 
The calculation of these probabilities using Markov vectors and matrices opens up the possibility 
of an empirical test of the overall hypothesis of this paper, which is that atoms exhibit a discrete 
probabilistic evolution, not a continuous one.   The test is this.   Place a single trapped atom or 
ion in a known mathematical superposition Ψ of excited energy levels.   Let A be the ground 
state, from which the electron is quickly driven into the fluorescent strong transition, and let B be 
the metastable “dark” state.   Calculate the probabilities of the transitions Ψ→A and Ψ→B using 
the Markov methods of this section, and check in a series of trials whether the observed 
frequencies match the predicted probabilities.   
 
(If it is more convenient to place the test atom in a mixed state D rather than a pure 
superposition, then the diagonal of the density matrix will serve equally well as the required 
Markov vector, from which the probabilities p(D→A) and p(D→B) can be obtained as before.) 
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9.   Discrete atomic transitions: ontology or epistemology? 
 
The present paper attempts to show that a consistent account can be given of energy changes in 
single atoms as Markov processes. In the course of the process the atom makes discrete 
transitions from one level to another in accordance with the probabilities of a Markov 
transition-matrix.   Many investigators on the other hand, who are of the opinion that quantum 
mechanics precludes transitions of this kind having any ontological status, interpret the 
transitions as measurement-induced, or as characterizing our knowledge of the atom rather than 
the atom itself.   See e.g. Javanainen (1986); Pegg, Loudon and Knight (1986); Cook (1990), pp. 
401-407; Wiseman (1996), esp. pp. 205-208; Wiseman and Toombes (1999).   A review and 
discussion of this approach is found in Home and Whitaker (1992), (1993).   
 
Here are some quotes: 
 

“The atomic evolution described by the density-matrix elements is of course 
continuous, but the detection of the emitted photon immediately converts a priori 
probabilities into a posteriori probabilities, giving rise to discontinuities or jumps 
associated with the detection process.”  (Pegg, Loudon and Knight (1986), p. 4085) 
 
“It is tempting to go beyond the picture presented by the measured results and to ask 
questions such as, ‘When did the quantum jump actually occur between the two 
measurements that gave different results?’   But such questions are undoubtedly 
inappropriate because it is the measurement itself that projects the system into the 
new state. ... Hence, quantum jumps seem to be a property of the measurement 
process.”  (Cook (1990), p. 399) 

 
The question of whether the sources of quantum jumps are instantaneous transitions in the atom, 
or alternatively the process of observation, comes to a head in the case of dark periods.   If 
during a period of active fluorescence a dark period intervenes in which no photons are detected, 
do the probabilities P1 and P2 of being in levels 1 and 2 change?   Not for dark periods of short 
duration, according to Cook (1990) p. 406, since it might be that the atom is in state 1  and 
simply has not yet emitted a photon.  But as the dark period lengthens, there occurs a 
knowledge-induced probability shift, a “Bayesian transition”, which gives the atom the new and 
longer expected lifetime of level 2 in place of the shorter lifetime of level 1.   
 
These Bayesian changes in probability are in Cook’s words “as ‘real’ as those caused by 
physical transitions”.   His claim is that, when an atom initially in any superposition of excited 
states is projected into the metastable state 2  by a Bayesian flow of probability, this constitutes 
“the quantum mechanical explanation of Dehmelt’s intuitive shelving concept”.   Cook 
concludes (p. 407) that “It is interesting that the quantum formalism attributes electron shelving 
to the lack of fluorescence, whereas the intuitive picture of the process attributed the lack of 
fluorescence to electron shelving”. 
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The majority view seems to be that discrete atomic transitions are not a feature of the physical 
world, but rather of our observation of the world.  To this thesis there are a number of possible 
replies, among them the following. 
 
(i)  As is argued in this paper, it is possible to give a consistent account of the evolution of 

atomic systems as Markov processes.  The appeal to photon detection as the source of 
discontinuous changes is therefore unnecessary. 

 
(ii)  Intuitively, one would think that atomic transitions in an atom cause photon emission, and 

photon emission causes a registration in a detector.   Conversely, lack of an atomic transition 
(i.e. “shelving”) causes lack of photon detection.   To reverse these causal dependencies, and 
argue that electron shelving should be attributed to absence of photon observation, would be 
justified only if the intuitive idea that atoms undergo discontinuous transitions were subject 
to severe objections.   However, the central thesis of this paper is that the discrete-transition 
model of atomic evolution is consistent, plausible and physical. 

 
(iii) As is pointed out in Home and Whitaker, detection of photons emitted by an atom can take 

place at great distances away, and at times long after the apparatus used to contain the atom 
has been dismantled (1992, p. 2392; 1993, p. 115).   One cannot “attribute quantum jumps to 
detection” if the system to which the transitions are attributed has ceased to exist before the 
detection takes place.   In particular, it would be inconsistent to suggest that the atomic 
process itself is “driven by the act of observation” (1993, p. 115). 

 
(iv) As is also noted in Home and Whitaker, those who claim that the behaviour of a physical 

system depends on the participation of an observer must be prepared to assert that the 
system would behave in a different fashion if unobserved (1992, p. 2392).   But this seems 
implausible.   How would one go about comparing the behaviour of an observed with an 
unobserved system?   The standard procedure is to construct a theory of a system, e.g. a 
Markov model of atomic transitions, and then test the model by comparing predicted with 
observed effects, probability values, etc. 

 
(v)  Finally, one of the strongest arguments against the idea that atomic transitions are the 

product of measurement, and in favour of their ontological status, is the mathematical 
conclusion that Cook and Kimble come to in their (1985).   This is, that in the 
V-configuration fluorescent system of section 1, both the “on/light” and “off/dark” times are 
distributed exponentially.   This implies that a histogram plot should show an inverse 
exponential relation between length of period and number of periods of a given length.  
Furthermore, the difference in decay rates for the “on” and “off” states must be due to a 
process, such as spontaneous emission, which affects only the length of the dark periods 
(Erber et al. (1989), pp. 259-60).   But if all this is so, then the evidence for identifying “dark 
period” with “atomic shelved state”, as opposed merely to “absence of photon detection”, 
becomes very strong.   What reason, other than decay of an atomic energy state, could 
account for the precise exponential distribution of dark times? 
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10.  Conclusion. 
 
The objective of the paper has been to suggest explicit recognition of the presence of 
discontinuity in atomic evolution by giving an account of atomic transitions as Markov 
processes, and to deal with the objection that superpositions of energy states cannot be 
incorporated into processes of this kind.   Amongst other things, this view implies that 
instantaneous transitions can be regarded as physical phenomena, and not simply as by-products 
of observational methods.   The strongest argument for the “ontological” status of atomic 
transitions is the fact, noted in (v) of section 9 above, that the exponential distribution of dark 
periods in fluorescence is evidence that such periods are caused by exponentially decaying 
metastable states.   In fact, both Nagourney, Sandberg and Dehmelt (1986), and Bergquist, Hulet, 
Itano and Wineland (1986) fit exponential curves to observed dark-time durations in order to 
obtain expected lifetime values of metastable states in barium and mercury ions.   Without the 
identification of dark periods with the occupancy of “shelved” atomic states, the central 
reasoning on which these papers are based would be lost.  
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