PELTON WHEEL TURBINE LAB

PURPOSE: The main purpose of this lab is to measure the power output of a Pelton Wheel turbine and to compare this to the theoretical power output. Another purpose of the lab is to check turbine scaling laws.

PROCEDURE: Set the driving pressure at a low level. Measure the flow rate through the turbine. Set the brake at some level and measure the brake load using the load cell and the rotor speed using a tachometer. Repeat for various brake settings. Set the driving pressure at a high level and repeat the experiment.

REPORT: Using the measured data, calculate the brake torque and the bucket speed: then calculate the brake power output of the turbine. Plot Power P versus RPM for each driving pressure. Plot Power Coefficient C_p versus Speed Coefficient C_s. Compare Actual Power with Theoretical Power. Comment on the results.
MEASUREMENTS

The brake power output of the turbine is:

\[P = T \omega \]

where \(T \) is the torque on the rotor and \(\omega \) is the rotational speed of the rotor. The torque is:

\[T = L d \]

where \(L \) is load measured by the brake load cell and \(d \) is the moment arm of the cell from the rotor axis. The rotor speed \(\omega \) is measured using a tachometer.

The theoretical power is a function of the bucket speed \(V_B \) and the jet speed \(V_J \). The bucket speed is:

\[V_B = R \omega \]

where \(R \) is the distance out to the bucket from the rotor axis. The jet speed is approximately:

\[V_J = k \sqrt{2P/\rho} \]

where \(k \) is a nozzle loss factor, \(\rho \) is the density of water and \(P \) is the jet driving pressure: this is measured using a pressure gage. For the lab turbine, \(k \) is 0.97, \(d \) is 15cm and \(R \) is 5cm.
PELTON WHEEL TURBINE THEORY

The power output of the turbine is:

\[P = T \omega \]

where \(T \) is the torque on the rotor and \(\omega \) is the rotational speed of the rotor. The torque is:

\[T = \Delta (\rho Q V_T R) \]

where \(Q \) is the volumetric flow rate through the turbine and \(V_T \) is the tangential flow velocity. The tangential flow velocities at inlet and outlet are:

\[V_{IN} = V_J \quad V_{OUT} = (V_J - V_B) K \cos \beta + V_B \]

where, relative to the tangential direction, \(\beta \) is the angle of the relative velocity vector and \(K \) is a loss factor. So power becomes:

\[P = \rho Q (V_J - V_B) (1 - K \cos \beta) V_B \]

For the lab turbine, \(\beta \) is 168° and \(K \) is 0.8. In the lab, the flow rate \(Q \) is measured using a V Notch Weir.
For turbines, we are interested mainly in the power of the device as a function of its rotational speed. The simplest way to develop a nondimensional power is to divide power P by something which has the units of power. The power in a flow is equal to its dynamic pressure P times its volumetric flow rate Q:

$$P \cdot Q$$

So, we can define a power coefficient C_P:

$$C_P = \frac{P}{P \cdot Q}$$

For a Pelton Wheel turbine, the dynamic pressure P is approximately equal to the driving pressure.

To develop a nondimensional version of the rotational speed of the turbine, we can divide the tip speed of the blades $R\omega$ by the flow speed U. For a Pelton Wheel turbine, the flow speed U is equal to the jet speed V_J. So, we can define a speed coefficient C_s:

$$C_s = \frac{R \omega}{V_J}$$
DATA SHEET FOR PELTON WHEEL TURBINE

JET PRESSURE =

FLOW RATE =

<table>
<thead>
<tr>
<th>RUN</th>
<th>BRAKE LOAD</th>
<th>ROTOR RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DATA SHEET FOR PELTON WHEEL TURBINE

JET PRESSURE =

FLOW RATE =

<table>
<thead>
<tr>
<th>RUN</th>
<th>BRAKE LOAD</th>
<th>ROTOR RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
STRAIN AMPLIFIER/SIGNAL CONDITIONER MODULES
FOR STRAIN GAGES, LOAD CELLS, AND TRANSDUCERS

DMD-460 Series

- Starts at $350

- Bridge Excitation
 4 to 15 Vdc Up to 120 mA
- Works with 120, 350, 500 Ω and Greater
 Bridge Circuits
- Adjustable Gain and Offset
- 6-Wire Bridge Connections
- Voltage and Current
 Output Versions
- 115 and 230 Vac, and
 DC-Powered Models

The DMD-460 Series bridge amplifiers are self-contained, AC- or DC-powered, signal conditioning modules for strain gages, load cells, and bridge-type sensors. The DMD-465 contains a precision differential instrumentation amplifier with voltage output. The similar DMD-465WB has a frequency response to 2 kHz, while the DMD-466 has a 4 to 20 mA output instead of a voltage output.

SPECIFICATIONS

COMMON
- Power: Standard 115 Vac or
 optional 240 Vac ±10% 50/60 Hz or
 10 to 35 Vac 0.7 A @ 10 V, 0.17 A @ 35 V at maximum excitation load
- Operating Temperature: 0 to 70°C
 (32 to 158°F)
- Storage Temperature: -25 to 85°C
 (-13 to 185°F)
- Weight: 310 g (11 oz)
- Size: 96 L x 51 W x 73 mm H
 (3.75 x 2 x 2.87"

BRIDGE SUPPLY
- Excitation Voltage Range: 4 to 15 Vdc
- Current Output: 120 mA max
- Line and Load Regulation:
 (0 to 100 mA) 0.05% max
- Output Noise: 0.5 mV rms

VOLTAGE OUTPUT
- DMD-465 and DMD-465WB
 Gain Range: 4 to 250 (up to 1000 with
 external resistor on DMD-465 only)

Dynamic Response:
- DMD-465: DC to -3 dB = 3 Hz
- DMD-465WB: DC to -3 dB = 2 kHz
- Max Output (2 kΩ Load): ±10 Vdc
- Output Impedance: 0.01 to 1 Ω
- Output Offset: ±5 to 2 V
- Gain Temp Coefficient: 200 ppm/°C
- Input Bias Current: ±30 nA
- Input Impedance: 3000 MΩ
- Dynamic Response: DC to -3 dB = 3 Hz

Input Range for 20 mA Output:
- 10 mV rms, 50 mV max
- Zero Adjust: 0 to ±12 mA
- Linearity: ±0.05%, FS
- Temperature Stability: 200 ppm/°C
- Input Impedance: 1000 MΩ
- Common-Mode Rejection: 50 dB
- Common-Mode Input Voltage: ±15 V
- Compliance Voltage: 10 Vdc
- Output Noise: ±1 μA rms @ gain
 0.2 mV, 1 to 100 Hz

MOST POPULAR MODELS HIGHLIGHTED!

To Order (Specify Model Number)

<table>
<thead>
<tr>
<th>MODEL NO.</th>
<th>PRICE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMD-465</td>
<td>$350</td>
<td>Voltage output</td>
</tr>
<tr>
<td>DMD-465-220V</td>
<td>350</td>
<td>220 Vac powered DMD-465</td>
</tr>
<tr>
<td>DMD-465WB</td>
<td>350</td>
<td>High-frequency voltage output</td>
</tr>
<tr>
<td>DMD-465WB-220V</td>
<td>350</td>
<td>220 Vac powered DMD-465WB</td>
</tr>
<tr>
<td>DMD-466</td>
<td>350</td>
<td>Current output (4 to 20 mA)</td>
</tr>
<tr>
<td>DMD-466-220V</td>
<td>350</td>
<td>220 Vac powered DMD-466</td>
</tr>
<tr>
<td>DMD-466DC</td>
<td>395</td>
<td>10 to 20 mA, 100 Vdc powered DMD-466</td>
</tr>
</tbody>
</table>

ACCESSORY

<table>
<thead>
<tr>
<th>MODEL NO.</th>
<th>PRICE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE-2454</td>
<td>$160</td>
<td>Reference Book: The Industrial Electronics Handbook</td>
</tr>
</tbody>
</table>
1" DIAMETER STAINLESS STEEL COMPRESSION LOAD CELL
0-100 lb TO 0-10,000 lb CAPACITIES

LC304 Series
Compression
0-25 lb to 0-10,000 lb
0-11 kg to 0-4537 kg
1 Newton = 0.2248 lb
calibration = 10 Newtons
1 lb = 454 g
1 t = 1000 kg = 2204 lb

All Models $295

- Heavy-Duty Design
- Built-In Load Button for Easy Installation
- Miniature 25 mm (1") Diameter and 25 mm (1") High Case
- 5-Point Calibration Provided

OMEGA's LC304 Series load cells offer the highest output of all miniature load cells. Their small 25 mm (1") diameter makes it easy to mount them in a pocket or on a flat surface. The rugged stainless steel case and high-quality construction ensure reliability.

SPECIFICATIONS
Excitation: 10 Vac, 15 Vdc max
Output: 2 mV/V nominal
Accuracy: ±0.5% FSO linearly, hysteresis, repeatability combined
5-Point Calibration: 0%, 25%, 50%, 75%, 100%
Zero Balance: ±2% FSO
Operating Temp Range: -54 to 107°C (-65 to 225°F)
Compensated Temp Range: 16 to 71°C (60 to 160°F)
Deflection: 0.025 to 0.076 mm (0.001 to 0.003")
Thermal Effects: Zero: ±0.029% FSO/C Span: ±0.036% FSO/C
Protection Class: P65

To Order (Specify Model Number)

<table>
<thead>
<tr>
<th>CAPACITY</th>
<th>MODEL NO.</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>LC304-25</td>
<td>$295</td>
</tr>
<tr>
<td>50</td>
<td>LC304-50</td>
<td>$295</td>
</tr>
<tr>
<td>75</td>
<td>LC304-75</td>
<td>$295</td>
</tr>
<tr>
<td>100</td>
<td>LC304-100</td>
<td>$295</td>
</tr>
<tr>
<td>200</td>
<td>LC304-200</td>
<td>$295</td>
</tr>
<tr>
<td>300</td>
<td>LC304-300</td>
<td>$295</td>
</tr>
<tr>
<td>500</td>
<td>LC304-500</td>
<td>$295</td>
</tr>
<tr>
<td>750</td>
<td>LC304-750</td>
<td>$295</td>
</tr>
<tr>
<td>1000</td>
<td>LC304-1000</td>
<td>$295</td>
</tr>
</tbody>
</table>

COMPATIBLE METERS:
- Series: DP41-S, DP23B-S

ACCESSORY
- OP-17 $15 Reference Book: Measure for Measure