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Abstract—A compact hardware implementation of a block 
cipher is attractive for any low-cost embedded application 
like smart cards. In this paper, a compact hardware 
architecture for Camellia is investigated. In this 
architecture, encryption and key scheduling share the same 
datapath and a four s-box iterative structure is employed. 
In the hardware design of cryptographic algorithms, 
concurrent error detection (CED) techniques have been 
proposed not only to protect the encryption and decryption 
process from random faults but also from the intentionally 
injected faults by some attackers. In our design, we also 
investigate a multiple parity code based error detection 
scheme. In our CED scheme, all the components are 
protected and all single-bit faults and most multiple faults 
will be detected. We study the implementation of the 
compact architecture for an ASIC and an FPGA. The 
design requires 14.12K gates with a throughput of 143 
Mbps based on 0.18-um CMOS standard cell library and 
1052 slices with a throughput of 135 Mbps based on Xilinx 
Virtex-E v1000efg860 chip. For our concurrent error 
detection, the hardware overhead is about 83%. 
 

1. Introduction 

Camellia is a 128-bit block cipher jointly developed by 
NTT and Mitsubishi Electric Corporation in 2000 [1]. It was 
chosen as a recommended algorithm by the NESSIE (New 
European Schemes for Signatures, Integrity and Encryption) 
project in 2003 [2] and was certified as the IETF (Internet 
Engineering Task Force) standard cipher for XML security 
URIs, SSL/TLS cipher suites and IPsec in 2005 [3][4][5].  

Camellia supports a data size of 128 bits and the key size 
can be 128, 192, or 256 bits and therefore Camellia has a 
compatible interface with the Advanced Encryption Standard 
(AES) [1]. It is a Feistel cipher which only processes half the 
data block each round and the same datapath can be shared by 
both encryption and decryption. This Feistel structure provides 
Camellia with a feature of small hardware design. Low-cost 
embedded applications like smart cards and handheld wireless 
devices require low hardware complexity while high speed is 

not emphasized. Therefore, a compact and efficient hardware 
implementation of Camellia is attractive for such applications.  

This paper is organized as follows: Section 2 briefly 
describes the structure of Camellia. Section 3 presents a 
compact S-box design using an inverter based on composite 
filed arithmetic operations in GF(24)n and it is compared with 
the straightforward combinational logic based S-box generated 
from look-up tables. Section 4 investigates a compact 
architecture for Camellia with a four S-box iterative structure. 
Section 5 is the Concurrent Error Detection scheme design for 
our compact architecture of Camellia. Section 6 is the 
hardware performance analysis for ASIC and FPGA 
implementations. Section 7 is the conclusion.  

 

2. Structure of Camellia 

Camellia requires 22-rounds of data processing composed 
of three main parts: an 18-round Feistel structure, two 
FL-function and FL-1-function rounds inserted every 6 rounds, 
and two input/output whitenings [1]. Figure 1 shows the entire 
encryption process using 128-bit keys. In the first and last 
round, the 128-bit data block is XORed with 128-bit round 
keys. Before the data block is fed to the Feistel network, it is 
separated into two 64-bit data blocks. The left half goes into 
the F function together with the 64-bit round key and the 
output of the F function is XORed with the right half block. At 
the end of each round, the right and left half block will be 
exchanged. In the F function, the input 64-bit data is first 
XORed with the 64-bit round key and then grouped into eight 
8-bit data blocks. All of them are separately input to eight 
S-boxes. 

In Camellia, four types of S-boxes are applied and each 
one consists of a multiplicative inversion and affine 
transformations. A linear 64-bit permutation follows the 
nonlinear substitution of S-boxes. The FL and FL-1 functions 
inserted every 6 rounds are used to provide non-regularity 
between the rounds so that the security of the cipher is 
increased and these two functions are similarly constructed by 
logical operations including AND, OR, XOR, and rotations.  
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Fig. 1 Encryption process of Camellia [1] 
 

The decryption of Camellia is performed in the same way 
as encryption except the subkeys should be in a reverse order. 
The key scheduler shares part of the process with encryption 
and has additional rotations of the subkeys.  

 

3. Camellia S-box Implementations  

The S-box is a major component in the hardware 
implementation. We have investigated two approaches to 
implement the S-boxes. One approach is to generate the 
straightforward combinational logic from the lookup tables 
described in the Camellia specification [2]. Another approach 
is a more compact S-box design using an inverter based on 
composite field arithmetic operations in GF(24)n [6]. The 
S-boxes of Camellia consist of multiplicative inversion on the 
Galois field GF(28) and affine transformations. We implement 
the inverter over the subfield GF(24) by using irreducible 
polynomials which are recommended in [7]. 

In S-box S1, linear affine transformations are performed 
before and after the multiplicative inversion and the other three 
S-boxes are related to S1. S2 and S3 are constructed from a 
1-bit left rotation and 1-bit right rotation of S1’s output, 
respectively. S4 is implemented as a 1-bit left rotation of S1’s 
input. Table 1 shows the performance comparisons between 
the four S-boxes implemented based on the two above 
approaches. For the hardware implementation, a 0.18-um 
CMOS standard cell library was used and one gate is 
equivalent to a 2-input NAND gate. We can see the look-up 
table method is faster than the composite field implementation, 
but the size is much larger. Hence, in our compact 
implementation of Camellia, the second approach is preferred.  

Table1. S-box performance comparison 

Component Method 
Size 

(gates) 
Delay 
(ns) 

S1-S4 GF(24) 288 6.9 
S1 Table 683 4.12 
S2 Table 690 4.25 
S3 Table 691 3.82 
S4 Table 684 3.92 

 

4. Compact Camellia architecture 

A big component of Camellia is the 8 S-boxes used in the 
64-bit F function. We reduce the 8 S-boxes into 4 S-boxes with 
the approach presented in [8]. As shown in Figure 2, the F32 
function has four S-boxes (S1, S4, S3, S2) in a twisted order. 
The 64-bit input data is also divided into two 4-byte blocks (x8, 
x7, x6, x5) and (x1, x4, x3, x2). These two blocks are fed to 
the S-boxes after the key addition to generate two output 
blocks (z8, z7, z6, z5) and (z1, z4, z3, z2). The twisted order of 
S-boxes and input data is used to satisfy the original 64-bit F 
function of Camellia where the inputs (x8, x7, x6, x5, x4, x3, 
x2, x1) should be corresponding to eight S-boxes in the order 
of (S1, S4, S3, S2, S4, S3, S2, S1). Following the S-boxes is 
the 64-bit P function which is only composed of XORs. 

 
Fig. 2 F32 function with four S-boxes [8] 

 
Fig. 3 Datapath of compact architecture 



Figure 3 shows the compact datapath for both the 
encryption process and the key scheduler. The 64-bit F 
function is divided into two 32-bit F32 functions with four 
S-boxes. The first round 64-bit output of the P function 
generated from the first 4-byte block is XORed with the 
second round output of the P function generated from the 
second 4-byte input data so that the final result of the original 
64-bit F function is obtained. The hardware is reduced while 
the throughput is also decreased due to the use of the F32 
function. Other major components are the FL and FL-1 
functions. These two functions are separately implemented, 
even though their structures are very similar to each other, 
because the merged hardware will have additional relatively 
costly multiplexers. In the key scheduler, the secret key KL is 
stored in register “KL” and the intermediate key KA is 
generated by the shared datapath of the encryption process. 
During the encryption process, the subkeys are generated by 
the 15-bit left rotation or 17-bit left rotation of KL and KA.  

 

5. Concurrent Error Detection Scheme Design for Camellia 

Although the digital hardware circuits are quite reliable 
today, faults could randomly occur or be induced intentionally 
for some cryptographic attacks. Concurrent error detection 
(CED) techniques have been proposed [9][10] not only to 
protect the encryption and decryption process from random 
faults, but also from the intentionally injected faults by 
attackers. In [11], redundancy-based concurrent error detection 
techniques have been proposed in two approaches: hardware 
and time redundancy. Another commonly used CED technique 
is based on the parity code [10][12] and this approach costs 
low hardware overhead. In our compact hardware 
implementation of Camellia, a multiple parity code based error 
detection scheme is investigated and the parity is generated for 
each byte of data. For the operations of the cipher, the parity of 
the output is predicted from the input data and is compared 
with the parity of actual output. This parity-based scheme is 
applied to all the linear components like multiplexers and 
XOR gates. When it comes to the non-linear component such 
as the S-box, the CED approach is based on the 
straightforward duplication of the component and resulting 
direct comparison of both outputs. Hence, any type or number 
of faults in the S-boxes could be detected.  

In this CED scheme for both encryption process and key 
scheduler, all the components are protected and all single-bit 
faults and most multiple faults will be detected. As long as one 
byte of data is affected by an odd number of errors, the 
multiple faults could be detected. As a result, our CED scheme 
has a high fault coverage. 

Figure 4 shows the F32 function with CED of Camellia. 
The registers m0, m1, m2, m3, m4, m5, m6, and m7 are the 
eight byte inputs of the F function and p0, p1, p2, p3, p4, p5, 
p6, and p7 are the eight parities of corresponding bytes. Figure 
5 shows the FL component with CED. The registers m0, m1, 
m2, and m3 are the left four bytes of the input data of FL 
function. 

 

 
Fig. 4 F32 Function with CED 

 

 
Fig. 5 FL Function with CED 

 
In our compact implementation of Camellia, the 

multiplexers and registers are the other simple basic 
components and they cost a large percentage of the whole 
hardware resource. Therefore, CED is also applied to protect 
these components. For multiplexers, no modification is needed 
for the prediction of the input parities since the selected data 
will not change. Byte-based parities will be generated for each 
input of the multiplexer and are then sent into another smaller 
multiplexer. Finally, the selected parities will be compared 
with the parities of the actual output of the multiplexer. For the 
register, one parity bit for each byte is attached within the 
register. For example, one 128-bit input and 128-bit output 
register will be extended into a 128-bit input and 144-bit 
output register which includes 16-bit predicted parities. The 
parity checking is performed between the predicted parities 
and the actual parities. For both registers and multiplexers, all 
the single-bit faults and most multiple faults would be detected 
based on the parity code CED scheme.  

In our whole CED scheme for Camellia, 22 checking 
points are inserted and all the components are under protection 
with high fault coverage at the cost of large amount of 
hardware overhead which includes the parity prediction circuit 
and duplicated components such as S-boxes. Since the 
encryption process and error detection can be performed at the 
same time, there is no notable error detection delay in our 
CED scheme designed for Camellia.  

 



6. Hardware Performance in ASIC and FPGA 

Based on the compact architecture of the encryption 
process and key scheduler, a 0.18-um CMOS standard cell 
library and a Xilinx FPGA chip Virtex-E v1000efg860 [13] are 
applied in our hardware performance analysis. With the 
0.18-um CMOS standard cell library, Synopsis has been 
applied as our synthesis tool. We find the datapath shared by 
the encryption process and key scheduler based on the S-boxes 
using GF(24) requires a size of 14.12K with a throughput of 
143Mbps. In addition, 1052 slices with a throughput of 135 
Mbps is required based on Xilinx Virtex-E v1000efg860 chip. 
After applying our CED scheme to the compact architecture of 
Camellia, the size of the datapath for the CMOS 
implementation rises to 26K gates resulting in a hardware 
overhead of 83%.  

 
7. Conclusion  

A compact implementation with a four S-box iterative 
structure of Camellia has been investigated in this paper and 
the performance is evaluated by using 0.18-um CMOS 
standard cell library and a Xilinx Virtex-E v1000efg860 chip. 
As the S-box is a major component of Camellia, the number of 
S-boxes applied in the datapath is reduced from eight to four 
for a more compact architecture. We have also investigated a 
multiple parity code based error detection scheme for our 
compact architecture of Camellia and all the components are 
protected with a high fault coverage.  
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