
Compact Hardware Implementation of the Block
Cipher Camellia with Concurrent Error Detection

Huiju Cheng and Howard M. Heys

Electrical and Computer Engineering
Memorial University of Newfoundland

Email: {chenghuiju, howard}@engr.mun.ca

Abstract—A compact hardware implementation of a block
cipher is attractive for any low-cost embedded application
like smart cards. In this paper, a compact hardware
architecture for Camellia is investigated. In this
architecture, encryption and key scheduling share the same
datapath and a four s-box iterative structure is employed.
In the hardware design of cryptographic algorithms,
concurrent error detection (CED) techniques have been
proposed not only to protect the encryption and decryption
process from random faults but also from the intentionally
injected faults by some attackers. In our design, we also
investigate a multiple parity code based error detection
scheme. In our CED scheme, all the components are
protected and all single-bit faults and most multiple faults
will be detected. We study the implementation of the
compact architecture for an ASIC and an FPGA. The
design requires 14.12K gates with a throughput of 143
Mbps based on 0.18-um CMOS standard cell library and
1052 slices with a throughput of 135 Mbps based on Xilinx
Virtex-E v1000efg860 chip. For our concurrent error
detection, the hardware overhead is about 83%.

1. Introduction

Camellia is a 128-bit block cipher jointly developed by
NTT and Mitsubishi Electric Corporation in 2000 [1]. It was
chosen as a recommended algorithm by the NESSIE (New
European Schemes for Signatures, Integrity and Encryption)
project in 2003 [2] and was certified as the IETF (Internet
Engineering Task Force) standard cipher for XML security
URIs, SSL/TLS cipher suites and IPsec in 2005 [3][4][5].

Camellia supports a data size of 128 bits and the key size
can be 128, 192, or 256 bits and therefore Camellia has a
compatible interface with the Advanced Encryption Standard
(AES) [1]. It is a Feistel cipher which only processes half the
data block each round and the same datapath can be shared by
both encryption and decryption. This Feistel structure provides
Camellia with a feature of small hardware design. Low-cost
embedded applications like smart cards and handheld wireless
devices require low hardware complexity while high speed is

not emphasized. Therefore, a compact and efficient hardware
implementation of Camellia is attractive for such applications.

This paper is organized as follows: Section 2 briefly
describes the structure of Camellia. Section 3 presents a
compact S-box design using an inverter based on composite
filed arithmetic operations in GF(24)n and it is compared with
the straightforward combinational logic based S-box generated
from look-up tables. Section 4 investigates a compact
architecture for Camellia with a four S-box iterative structure.
Section 5 is the Concurrent Error Detection scheme design for
our compact architecture of Camellia. Section 6 is the
hardware performance analysis for ASIC and FPGA
implementations. Section 7 is the conclusion.

2. Structure of Camellia

Camellia requires 22-rounds of data processing composed
of three main parts: an 18-round Feistel structure, two
FL-function and FL-1-function rounds inserted every 6 rounds,
and two input/output whitenings [1]. Figure 1 shows the entire
encryption process using 128-bit keys. In the first and last
round, the 128-bit data block is XORed with 128-bit round
keys. Before the data block is fed to the Feistel network, it is
separated into two 64-bit data blocks. The left half goes into
the F function together with the 64-bit round key and the
output of the F function is XORed with the right half block. At
the end of each round, the right and left half block will be
exchanged. In the F function, the input 64-bit data is first
XORed with the 64-bit round key and then grouped into eight
8-bit data blocks. All of them are separately input to eight
S-boxes.

In Camellia, four types of S-boxes are applied and each
one consists of a multiplicative inversion and affine
transformations. A linear 64-bit permutation follows the
nonlinear substitution of S-boxes. The FL and FL-1 functions
inserted every 6 rounds are used to provide non-regularity
between the rounds so that the security of the cipher is
increased and these two functions are similarly constructed by
logical operations including AND, OR, XOR, and rotations.

0840-7789/07/$25.00 ©2007 IEEE

Fig. 1 Encryption process of Camellia [1]

The decryption of Camellia is performed in the same way
as encryption except the subkeys should be in a reverse order.
The key scheduler shares part of the process with encryption
and has additional rotations of the subkeys.

3. Camellia S-box Implementations

The S-box is a major component in the hardware
implementation. We have investigated two approaches to
implement the S-boxes. One approach is to generate the
straightforward combinational logic from the lookup tables
described in the Camellia specification [2]. Another approach
is a more compact S-box design using an inverter based on
composite field arithmetic operations in GF(24)n [6]. The
S-boxes of Camellia consist of multiplicative inversion on the
Galois field GF(28) and affine transformations. We implement
the inverter over the subfield GF(24) by using irreducible
polynomials which are recommended in [7].

In S-box S1, linear affine transformations are performed
before and after the multiplicative inversion and the other three
S-boxes are related to S1. S2 and S3 are constructed from a
1-bit left rotation and 1-bit right rotation of S1’s output,
respectively. S4 is implemented as a 1-bit left rotation of S1’s
input. Table 1 shows the performance comparisons between
the four S-boxes implemented based on the two above
approaches. For the hardware implementation, a 0.18-um
CMOS standard cell library was used and one gate is
equivalent to a 2-input NAND gate. We can see the look-up
table method is faster than the composite field implementation,
but the size is much larger. Hence, in our compact
implementation of Camellia, the second approach is preferred.

Table1. S-box performance comparison

Component Method
Size

(gates)
Delay
(ns)

S1-S4 GF(24) 288 6.9
S1 Table 683 4.12
S2 Table 690 4.25
S3 Table 691 3.82
S4 Table 684 3.92

4. Compact Camellia architecture

A big component of Camellia is the 8 S-boxes used in the
64-bit F function. We reduce the 8 S-boxes into 4 S-boxes with
the approach presented in [8]. As shown in Figure 2, the F32
function has four S-boxes (S1, S4, S3, S2) in a twisted order.
The 64-bit input data is also divided into two 4-byte blocks (x8,
x7, x6, x5) and (x1, x4, x3, x2). These two blocks are fed to
the S-boxes after the key addition to generate two output
blocks (z8, z7, z6, z5) and (z1, z4, z3, z2). The twisted order of
S-boxes and input data is used to satisfy the original 64-bit F
function of Camellia where the inputs (x8, x7, x6, x5, x4, x3,
x2, x1) should be corresponding to eight S-boxes in the order
of (S1, S4, S3, S2, S4, S3, S2, S1). Following the S-boxes is
the 64-bit P function which is only composed of XORs.

Fig. 2 F32 function with four S-boxes [8]

Fig. 3 Datapath of compact architecture

Figure 3 shows the compact datapath for both the
encryption process and the key scheduler. The 64-bit F
function is divided into two 32-bit F32 functions with four
S-boxes. The first round 64-bit output of the P function
generated from the first 4-byte block is XORed with the
second round output of the P function generated from the
second 4-byte input data so that the final result of the original
64-bit F function is obtained. The hardware is reduced while
the throughput is also decreased due to the use of the F32
function. Other major components are the FL and FL-1
functions. These two functions are separately implemented,
even though their structures are very similar to each other,
because the merged hardware will have additional relatively
costly multiplexers. In the key scheduler, the secret key KL is
stored in register “KL” and the intermediate key KA is
generated by the shared datapath of the encryption process.
During the encryption process, the subkeys are generated by
the 15-bit left rotation or 17-bit left rotation of KL and KA.

5. Concurrent Error Detection Scheme Design for Camellia

Although the digital hardware circuits are quite reliable
today, faults could randomly occur or be induced intentionally
for some cryptographic attacks. Concurrent error detection
(CED) techniques have been proposed [9][10] not only to
protect the encryption and decryption process from random
faults, but also from the intentionally injected faults by
attackers. In [11], redundancy-based concurrent error detection
techniques have been proposed in two approaches: hardware
and time redundancy. Another commonly used CED technique
is based on the parity code [10][12] and this approach costs
low hardware overhead. In our compact hardware
implementation of Camellia, a multiple parity code based error
detection scheme is investigated and the parity is generated for
each byte of data. For the operations of the cipher, the parity of
the output is predicted from the input data and is compared
with the parity of actual output. This parity-based scheme is
applied to all the linear components like multiplexers and
XOR gates. When it comes to the non-linear component such
as the S-box, the CED approach is based on the
straightforward duplication of the component and resulting
direct comparison of both outputs. Hence, any type or number
of faults in the S-boxes could be detected.

In this CED scheme for both encryption process and key
scheduler, all the components are protected and all single-bit
faults and most multiple faults will be detected. As long as one
byte of data is affected by an odd number of errors, the
multiple faults could be detected. As a result, our CED scheme
has a high fault coverage.

Figure 4 shows the F32 function with CED of Camellia.
The registers m0, m1, m2, m3, m4, m5, m6, and m7 are the
eight byte inputs of the F function and p0, p1, p2, p3, p4, p5,
p6, and p7 are the eight parities of corresponding bytes. Figure
5 shows the FL component with CED. The registers m0, m1,
m2, and m3 are the left four bytes of the input data of FL
function.

Fig. 4 F32 Function with CED

Fig. 5 FL Function with CED

In our compact implementation of Camellia, the

multiplexers and registers are the other simple basic
components and they cost a large percentage of the whole
hardware resource. Therefore, CED is also applied to protect
these components. For multiplexers, no modification is needed
for the prediction of the input parities since the selected data
will not change. Byte-based parities will be generated for each
input of the multiplexer and are then sent into another smaller
multiplexer. Finally, the selected parities will be compared
with the parities of the actual output of the multiplexer. For the
register, one parity bit for each byte is attached within the
register. For example, one 128-bit input and 128-bit output
register will be extended into a 128-bit input and 144-bit
output register which includes 16-bit predicted parities. The
parity checking is performed between the predicted parities
and the actual parities. For both registers and multiplexers, all
the single-bit faults and most multiple faults would be detected
based on the parity code CED scheme.

In our whole CED scheme for Camellia, 22 checking
points are inserted and all the components are under protection
with high fault coverage at the cost of large amount of
hardware overhead which includes the parity prediction circuit
and duplicated components such as S-boxes. Since the
encryption process and error detection can be performed at the
same time, there is no notable error detection delay in our
CED scheme designed for Camellia.

6. Hardware Performance in ASIC and FPGA

Based on the compact architecture of the encryption
process and key scheduler, a 0.18-um CMOS standard cell
library and a Xilinx FPGA chip Virtex-E v1000efg860 [13] are
applied in our hardware performance analysis. With the
0.18-um CMOS standard cell library, Synopsis has been
applied as our synthesis tool. We find the datapath shared by
the encryption process and key scheduler based on the S-boxes
using GF(24) requires a size of 14.12K with a throughput of
143Mbps. In addition, 1052 slices with a throughput of 135
Mbps is required based on Xilinx Virtex-E v1000efg860 chip.
After applying our CED scheme to the compact architecture of
Camellia, the size of the datapath for the CMOS
implementation rises to 26K gates resulting in a hardware
overhead of 83%.

7. Conclusion

A compact implementation with a four S-box iterative
structure of Camellia has been investigated in this paper and
the performance is evaluated by using 0.18-um CMOS
standard cell library and a Xilinx Virtex-E v1000efg860 chip.
As the S-box is a major component of Camellia, the number of
S-boxes applied in the datapath is reduced from eight to four
for a more compact architecture. We have also investigated a
multiple parity code based error detection scheme for our
compact architecture of Camellia and all the components are
protected with a high fault coverage.

References

[1] K. Aoki, T. Ichikawa, M. Kansa, M. Matsui, S. Moriai, J.

Nakajima, and T. Tokita, “Camellia: A 128-Bit Block
Ciphers Suitable for Multiple Platforms – Design and
Analysis”, Lecture Notes in Computer Science, Vol. 2012,
pp. 39-56, 2001.

[2] K. Aoki, T. Ichikawa, M. Kansa, M. Matsui, S. Moriai,
Nakajima, and T. Tokita,

“Specification of Camellia - a 128-bit Block Cipher”,
http://www.cosic.esat.kuleuven.be/nessie/workshop/submis
sions, 2000.

[3] D. Eastlake, “Additional XML Security Uniform Resource
Indentifiers (URIs)”, RFC4051, 2005.

[4] S. Moriai, A. Kato, M. Kanda, “Addition of Camellia
Cipher Suites to Transport Layer Security (TLS)”,
RFC4132, 2005.

[5] A. Kato, S. Moriai, M.Kanda, “The Camellia Cipher
Algorithm and Its Use With IPsec”, RFC4312, 2005.

[6] J. Wolkerstorfer, E. Oswald, and M. Lamberger, “An ASIC
Implementation of the AES SBoxes”, Lecture Notes in
Computer Science, Vol. 2271, pp. 67-78, 2002.

[7] A. Satoh, S. Morioka, “Unified Hardware Architecture for

128-Bit Block Ciphers AES and Camellia”, CHES 2003,
Lecture Notes in Computer Science, Vol. 2779, Springer,
2003, pp. 304-318.

[8] A. Satoh, S. Morioka, “ Hardware-focused Performance
Comparison for the Standard Block Ciphers AES, Camellia,
and Triple-DES”, Lecture Notes in Computer Science, Vol.
2851, Springer 2003, pp. 252-266, 2003.

[9] R. Karri, K. Wu, P. Mishra, Y. Kim, “Fault-based
side-channel cryptanalysis tolerant Rijndael symmetric
block cipher architecture”, IEEE International
Symposium on Defect and Fault Tolerance in VLSI
Systems (DFT'01), 2001.

[10] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, and V.
Piuri, “A Parity Code Based Fault Detection for an
Implementation of the Advanced Encryption Standard”,
2002 IEEE International Symposium on Defect and Fault
Tolerance in VLSI Systems (DFT 2002), pp 51-59,
November 2002.

[11] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, and V.
Piuri, “Error Analysis and Detection Procedures for a
Hardware Implementation of the Advanced Encryption
Standard”, IEEE Transactions on Computers, Vol. 52, No.
4, April 2003.

[12] K. Wu, R. Karri, G. Kouznetzov and M. Goessel, “Low
Cost Concurrent Error Detection for the Advanced
Encryption Standard”, International Test Conference 2004
(ITC 2004), pp. 1242-1248, 2004.

[13] Xilinx: Virtex-E Data sheet,

http://www.xilinx.com.

	Select a link below
	Return to Proceedings

