
Hardware Design and Analysis of

Statistical Cipher Feedback Mode Using Serial Transfer

Liang Zhang, Howard M. Heys
Electrical and Computer Engineering
Memorial University of Newfoundland

St. John’s, Newfoundland
e-mail: {lzhang, howard}@engr.mun.ca

Abstract

In this paper, the hardware design of a recently proposed mode
of operation for a block cipher, referred to as Statistical Ci-
pher Feedback (SCFB), is investigated. Specifically, we exam-
ine a structure which employs serial transfer from the Plaintext
Queue to the Ciphertext Queue. SCFB mode is the hybrid of
output feedback (OFB) mode and cipher feedback (CFB) mode
that allows a block cipher to be configured as a self-synchronizing
stream cipher. Consequently, SCFB mode feeds back ciphertext
to the input of the block cipher similar to the conventional CFB
mode, except that the feedback only occurs when the n bit sync-
pattern is recognized thus making SCFB more efficient in its im-
plementation than conventional CFB mode. An iterative based
implementation of the Advanced Encryption Strandard (AES) is
investigated and the relationship among three different clock do-
mains associated with a serial transfer implementation is stud-
ied based on the synthesis results for various components of the
system, as is the system efficiency. From simulations, an ap-
propriate buffer size which minimizes queue overflow is selected
for the design. The design is synthesized as an ASIC targeted
to 0.18 CMOS standard cell technology. From the synthesis re-
sult, the throughput of the SCFB system is determined to be
100 Mbps. The total area of the SCFB system is approximately
41600 gates, of which 16900 is for AES.

1 Introduction and Background

A stream cipher is an important method of encryp-
tion in which the plaintext is encrypted bit-by-bit or
symbol-by-symbol to produce the corresponding ci-
phertext. A stream cipher can be constructed by gen-
erating a pseudo-random keystream using a block ci-
pher output to exclusive-or (XOR) with the plaintext
to produce ciphertext at the transmitter. At the re-
ceiver, the plaintext is recovered by generating the
identical keystream which is then XORed with the ci-
phertext. Stream ciphers can be used for high-speed
networks at the physical layer in a communication sys-
tem.

In a typical stream cipher configuration, a single
bit of ciphertext error only results in a single bit of
recovered plaintext error. However, a stream cipher
will cause complete nonsense data for the rest of the
recovered plaintext if bit slips or insertions happen
in the communication channel. Hence, it is impor-
tant to keep the keystream of both the transmitter
and receiver synchronized. Output feedback (OFB)
mode and cipher feedback (CFB) mode are two con-
ventional modes of operation of block ciphers that
allow their use as stream ciphers. In this work, we

are concerned with statistical cipher feedback (SCFB)
mode, proposed in [1] and investigated in [2], which
is a hybrid of CFB and OFB. This SCFB mode con-
figures block ciphers, such as the Advanced Encryp-
tion Standard (AES) [3], as stream ciphers capable of
self-synchronization. SCFB mode has been proposed
to provide physical layer security for a SONET/SDH
environment and is suitable for many other applica-
tions as well. In this paper, the hardware structure for
SCFB mode using a serial transfer implementation is
thoroughly investigated.

The sketch of SCFB mode is shown in Figure 1.
The Sync Pattern Recognition block is used to scan
ciphertext to find an n bit sync pattern and collect
an initialization vector(IV) after the sync pattern is
found. The input of the block cipher can be either the
output of the block cipher (OFB mode) or the IV from
the ciphertext (CFB mode) depending on whether the
n bit sync pattern is recognized.

2 Hardware Design of SCFB Using
Serial Transfer

2.1 AES with Key-Scheduling

The AES algorithm [3] is a symmetric block cipher
developed for the National Institute of Standards and
Technology (NIST) to replace DES. In this work, AES
with a key length of 128 bits is adopted for the block
cipher to generate the key stream block. The AES al-
gorithm repeats a series of operations for 10 rounds.
Figure 2 shows the steps of the AES algorithm. In a
hardware implementation, the round function is per-
formed iteratively 10 times and the data path is shared
for different rounds of the algorithm. The S-box of
AES is based on the composite field based on GF (24)
implementation [5].

2.2 Hardware Implementation Details

The hardware implementation of SCFB mode using
serial transfer from the plaintext queue to the cipher-
text queue is illustrated in Figure 3. The plaintext
queue is needed to store the incoming bits and trans-
fer them out to XOR with the keystream bit by bit.
The ciphertext queue is needed to store the ciphertext
bits and send them out of the SCFB system bit by bit.

0840-7789/07/$25.00 ©2007 IEEE 



Figure 1: SCFB system Figure 2: AES using key-scheduling

The queuing system is necessary to accomodate peri-
ods during which the keystream is not available due
to resynchronization. A previous implementation of
SCFB mode transfered data between queues in blocks
of 128 bits [4]. However, the resulting design required
a large amount of hardware. In the serial design, there
are three clocks, clk1, clk2 and clk3, to control the
running speeds of the data transfer and the block ci-
pher: clk1 is used to clock the transfer of data out of
the plaintext queue and into the ciphertext queue, clk2
is used to clock data into and out of the SCFB system,
and clk3 is used to clock a round of the block cipher.
The plaintext queue and the ciphertext queue are ini-
tialized to be empty and full, respectively. While the
plaintext data is being collected bit by bit in the plain-
text queue, a keystream block of 128 bits is generated
by the block cipher. If a block of keystream is ready
and the sync pattern is not recognized, the B = 128
bits of the keystream will be loaded into Block Regis-
ter. Also the same keystream will be loaded into the
block cipher as the new input data. Then, Shift Reg-
ister (SR) will load in this block of keystream if it is
empty and then begin to shift bits out one by one. At
the same time, the plaintext queue will shift out the
data bit by bit to XOR with the keystream coming
from Shift Register. When the sync pattern is recog-
nized, the system will continue working in the OFB
mode for at least 128 clk1 cycles to collect the com-
plete IV into IV Shift Register. When the 128 bits
of IV are ready in IV Shift Register, Shift Register,
Plaintext Queue and Ciphertext Queue will be held.
That is to say, Shift Register and the plaintext queue
will not shift out bits any more, and the ciphertext
queue will not have any incoming data until the new
IV is used to create a new keystream block. However,
the plaintext queue will continue to accept incoming
data and the ciphertext queue will continue to trans-
mit outgoing data. The new IV block is sent into the
block cipher as the new “data in”, and the next block

of key stream will be generated by the block cipher.
After this new keystream is ready, the controller will
provide it to Shift Register and simultaneously unhold
Shift Register, Plaintext Queue, Ciphertext Queue and
IV Shift Register.

3 Synthesis Results, Analysis and
Comments on the Design

As we mentioned before, there are three clock do-
mains in this system. Among these clocks, clk1 is the
fastest clock and it can be the base system clock in
the implementation. The clocks clk2 and clk3 can be
derived from clk1. As shown in Figure 3, the rate of
incoming plaintext data to Plaintext Queue, R, is di-
rectly equal to the frequency of clk2, since the data
collection of Plaintext Queue is based on clk2. The
system efficiency can be controlled by adjustment of
these three clock frequencies. Plaintext Queue collects
incoming data at the rate R and outputs the data at
the rate of clk1. Ciphertext Queue has the reverse sit-
uation. The interfaces (Block Register, Shift Register,
etc.) of the block cipher also use clk1 to keep the same
pace with the two queues. The block cipher, which is
clocked at a per-round rate of clk3, has to run as fast
as possible in order to reduce the idle time that stalls
the queue bit transfer due to generating the keystream
when resynchronization occurs.

In order to make the hardware size as small as pos-
sible, design simulations for buffer sizes ranging from
48 to 256 bits and different clock frequencies for the
block cipher are undertaken. From the simulations,
for clock frequencies of clk1 = 1/10 ns, clk2 = 1/5
ns and clk3 = 1/25 ns, an appropriate buffer size of
64 bits which was found to have no queue overflow
is selected. The distribution of number of bits in the
plaintext queue is shown in Figure 4 for varying sync-
pattern sizes. The simulation results are based on 4000
cycles of clk3. In general, with high probability there
will be fewer than 6 bits in the queue. At times, with



Figure 3: Hardware implementation of SCFB using serial transfer

non-zero probability, as many as 45 bits were found
in the queue. This results from the resynchronization
of the SCFB system. The number of stored bits con-
tinuously increases without any outgoing bits in the
plaintext queue when the new IV is used to generate a
keystream block. The resynchronization happens more
frequently for the smaller size of sync-pattern. So the
queue would have more chances to be filled with incom-
ing bits without any outgoing bits during the resyn-
chronization for the smaller size of sync-pattern. The
same queue would have less time for the normal op-
eration where the resynchronization does not happen.
This is why the peak for the smaller size sync-pattern is
lower than that for the larger size sync-pattern. From
simulations, we also get the average number of bits =
7.99, 11.88 and 14.13 in queue for sync-pattern size =
8, 6 and 4, respectively.

An ASIC synthesis with 0.18 micron CMOS stan-
dard cell technology using Synopsys tools supported by
Canadian Microelectronics Corporations (CMC) was
completed. We use the number of equivalent 2-input
NAND gates for the total area as a metric of circuit
size. The synthesis results of the block cipher, Plain-
text Queue and Ciphertext Queue are shown in Table
I. The speed of the block cipher is set to 128/12 × 25
ns ≈ 426.67 Mbps using clk3 to be 1/5 of clk2. The
throughput of the SCFB system is 1/10 ns = 100
Mbps. Hence, the efficiency is 100/426.67 ≈ 23.4%.
Thus, the throughput of Plaintext Queue becomes the
bottleneck of the system. To improve the efficiency
and speed of this system the structure must be changed

from serial to parallel transfer, when bits can be trans-
fered between queues in blocks that are much less than
128 bits in size. This modification is left for future
work to be done.

TABLE I

Synthesis result using 0.18 micron CMOS

Total Area (# gates)
Plaintext Queue 1232

Ciphertext Queue 2291
PQ CQ Integrated 3525

AES 16919
SCFB System 41600

4 Conclusion

In this paper, the hardware implementation of Sta-
tistical Cipher Feedback (SCFB) using serial transfer
from the plaintext queue to the ciphertext queue was
investigated. An iterative implementation of the Ad-
vanced Encryption Strandard (AES) was adopted as
the block cipher in this SCFB system. Although the
throughput of the block cipher is high, the throughput
of the plaintext queue can only reach 100 Mbps, which
becomes the bottleneck of the system efficiency and
throughput. By doing the functional simulations for
different buffer sizes, we have selected an appropriate
buffer size of 64 bits which minimizes queue overflow.
We have also investigated how the various sync-pattern
sizes affect the probability distribution of the current



0 5 10 15 20 25 30 35 40 45 50 55 60 64
0

5%

10%

15%

20%

25%

30%

35%

40%

50%

 

 

Probability distribution of # bits in the queue 
(PQ−size = 64 bits; clk3 = 25 ns; sync−pattern−size = 4, 6, 8, respectively, Running time = 1000000 ns)

P
er

ce
n

ta
g

e 
o

f 
R

u
n

n
in

g
 t

im
e 

(f
ro

m
 1

00
0 

n
s 

to
 1

00
00

00
 n

s)

# bits in the Plaintext Queue

sync−size = 4
sync−size = 6
sync−size = 8

Figure 4: Probability Distribution of # bits in the plaintext queue

number of bits and average number of bits in the plain-
text queue.

References

[1] O. Jung and C. Ruland, “Encryption with
Statistical Self-Synchronization in Synchronious
Broadband Networks”,Cryptographic Hardware
and Embedded Systems - CHES’99, Lecture Notes
in Computer Science 1717, Springer-Verlag, pp.
340-352, 1999.

[2] Howard M. Heys, “Analysis of the Statistical
Cipher Feedback Mode of Block Ciphers”,IEEE

Transactions on Computers, vol. 52, issue 1, pp.
77-92, Jan. 2003.

[3] National Institute of Standards and Technology,
AES web site: csrc.nist.gov/encrytion/aes.

[4] Fang Yang, “Analysis and Implementation of Sta-
tistical Cipher Feedback Mode and Optimized Ci-
pher Feedback Mode,” Master Thesis, Memorial
University of Newfoundland, Jan. 2004.

[5] J. Wolkerstorfer, E. Oswald, M. Lamberger, “An
ASIC implementation of the AES SBoxes,”The
Cryptographer’s Track at the RSA Conference
2002, pp. 67, Feb. 2002.


	Select a link below
	Return to Proceedings




