
Hardware Implementation of the Salsa20 and Phelix Stream Ciphers

Junjie Yan and Howard M. Heys
Electrical and Computer Engineering

Memorial University of Newfoundland
Email: {junjie, howard}@engr.mun.ca

Abstract— In this paper, we present an analysis of the digital

hardware implementation of two stream ciphers proposed for the

eSTREAM project: Salsa20 and Phelix. Both high speed and

compact designs are examined, targeted to both field

programmable (FPGA) and application specific integrated circuit

(ASIC) technologies.

 The studied designs are specified using the VHDL hardware

description language, and synthesized by using Synopsys CAD

tools. The throughput of the compact ASIC design for Phelix is

260 Mbps targeted for 0.18µ CMOS technology and the

corresponding area is equivalent to about 12,400 2-input NAND

gates. The throughput of Salsa20 ranges from 38 Mbps for the

compact FPGA design, implemented using 194 CLB slices to 4.8

Gbps for the high speed ASIC design, implemented with an area

equivalent to about 470,000 2-input NAND gates.

1. INTRODUCTION
The eSTREAM project [1] is a multi-year effort aimed at
finding new stream ciphers that are suitable for widespread
adoption. More than 30 new stream cipher primitives have
been proposed. The project is composed of two phases to
evaluate the performance of software and hardware
implementations respectively.
 At the end of phase one, the software performances have
been analyzed comprehensively. However, the hardware
implementation results are far from sufficient. Compared with
software implementations, hardware implementations are less
flexible but can typically be more compact and fast. As well,
encryption hardware cores are usually isolated from other
hardware in a system, so hardware implementation for a cipher
is often more secure.
 The research of this paper examines designs of Salsa20 [2]
and Phelix [3], both of which are claimed suitable for software
and hardware implementation. The needs of different
applications in communication systems demand different
structures for cryptographic algorithms in hardware. For
example, in wireless applications like cell phones,
compactness and low power consumption are critical because

of battery limitations and portability, while for virtual private
network (VPN) applications and secure e-commerce web
servers, demand for high-speed encryption is rapidly
increasing.
 When considering implementation technologies, normally,
the ASIC approach provides better performance in density and
throughput, but an FPGA is reconfigurable and more flexible.
In our study, several schemes are used, catering to the features
of the target technology.

2. PHELIX
2.1 Short Description of the Phelix Algorithm
Phelix is claimed to be a high-speed stream cipher. It is
selected for both software and hardware performance
evaluation by the eSTREAM project. The cipher supports an
8-bit to 256-bit length key and a 128-bit nonce to generate the
keystream bits with a built-in Message Authentication Code
(MAC).

Phelix is targeted at 32-bit platforms. It is composed of a
serial of simple operations: addition modulo 232, exclusive or,
and rotation by a fixed number of bits. There are 5 words that
are updated during each round, and 4 “old” words are stored in
memory to be used in the keystream output function.

One block that produces one word of keystream consists of
two “half-block” functions H, which is defined as:
 Function H (w0,w1,w2,w3,w4, K0,K1)

Begin
w0 := w0 (w3⊕K0); w3 := w3＜＜＜15;
w1 := w1 w4; w4 := w4＜＜＜25;
w2 := w2⊕w0; w0 := w0＜＜＜9;
w3 := w3⊕w1; w1 := w1＜＜＜10;
w4 := w4 w2; w2 := w2＜＜＜17;
w0 := w0⊕(w3 K1); w3 := w3＜＜＜30;
w1 := w1⊕w4; w4 := w4＜＜＜13;
w2 := w2 w0; w0 := w0＜＜＜20;
w3 := w3 w1; w1 := w1＜＜＜11;
w4 := w4⊕w2; w2 := w2＜＜＜5;
Return (w0,w1,w2,w3,w4);

0840-7789/07/$25.00 ©2007 IEEE

End.
The bitwise exclusive-or of two words, denoted as “⊕”, is

the sum of the words with carries suppressed. The symbol
“<<<” represents left rotation, and “ ” represents addition
modulo 232. Further details of the algorithm can be found in
[3].
2.2 Compact ASIC Structure of Phelix

 The Phelix stream cipher can be implemented in many ways.
The proposed compact structure focuses on function sharing to
optimize the area. Figure 1 illustrates a minimal ASIC
implementation consisting of one round of encryption and a
memory recording the four old states.

XOR

A
dd

er

0

Plaintext0

R
EG

cl
k

d
q

FIFO

Keystream

Figure 1. Phelix Compact Structure

 The specifications of the main blocks are given below:
 n_expand: converts a variable-length input nonce to

the fixed-length working nonce.
 key_mix: converts a variable-length input key to the

fixed-length working key.
 subkey_gen: generates subkeys Xi,0, Xi,1 for each

block.
 ini_dp: decides the input of H_func. For the first eight

blocks (initialization phase), the generated keystream
is discarded.

 H_func: performs function H (w0,w1,w2,w3,w4, K0,K1).
 FIFO: the “first in, first out” memory that stores the

old states.
To improve the performance, the subkey generation is on

the fly: during each block, two words of subkeys are produced
and used as parameters in H function block that generates the
32-bit key stream later.

To increase the speed of the encryption, we could design
additional logic to perform the H function. It would require

more adders and 32-bit exclusive-or function blocks that can
work in parallel. However, it will dramatically increase the
size of the H function circuit since the adder is the largest
component compared with other simple function blocks, such
as a 32-bit register. So far, we have not investigated the exact
area penalty inferred by this option.

Also, many multiplexers can be removed to shorten the
critical path. But the gained benefit is limited. Implemented by
using 0.18µ CMOS technology, the multiplexers have a
0.37～0.70 ns range of critical path, depending on the number
of the input ports, while the overall critical path that contains
only two multiplexers is around 7 ns. Only a 10% speed
increase can be gained by this method.

Furthermore, it is possible to compute the subkeys off-chip,
and then download them into the circuit memory to save time.
However, this may affect the security of the device.

3. SALSA20
3.1. Short Description of the Salsa20 Algorithm

As one of the stream cipher candidates of the eSTREAM
project, Salsa20 is claimed to provide high security, and is
composed of several simple operations that are similar to
Phelix. The core of Salsa20 is a hash function, encrypting a
512-bit block of plaintext by hashing the key (128-bit), nonce
(64-bit), and a sequence number (64-bit) to a 512-bit output.

The main function in the Salsa20 core is called quarterround
function. Define y as a 4-word sequence then quarterround(y)
is a 4-word sequence.
If y = (y0;y1;y2;y3), then quarterround(y) = (z0;z1;z2;z3), where
yi and zi are 32-bit words, i∈{0,1,2,3} and

z1 = y1 ⊕ ((y0 y3) <<< 7)
z2 = y2 ⊕ ((z1 y0) <<< 9)
z3 = y3 ⊕ ((z2 z1) <<< 13)
z0 = y0 ⊕ ((z3 z2) <<< 18)
If we consider the 64-byte input block as a 4×4 matrix of

32-bit words, the four elements in each row and each column
will be modified by quarterround function ten times,
respectively. After that, the output is added with the original
values, producing a 4-word keystream.

3.2. Compact ASIC Structure of Salsa20
The compact structure of Salsa20 mainly contains two 32-bit
×16 memory blocks, a controller and one quarterround
function block.

Figure 2. Datapath of Quarterround Block
 The design of quarterround block is straightforward. If the
reset signal in the controller occurs, the contents of all
registers are formatted to zero. If the start signal occurs, the
inputs are loaded into the registers in parallel, and then the
core performs addition, rotation, and XOR sequentially. After
that, the modified data is loaded into the registers again.

Figure 3. Salsa20 Compact ASIC Structure
The specifications of the main blocks are given below:

 Quarterround: performs quarterround function.
 Mem0(modify): stores the 16 original 32-bit words,

and its contents will be modified after each
quarterround function.

 Mem1(no modify): stores the 16 original 32-bit words,
which will not be touched until the quarterround
function block has been used for twenty times.

The critical paths of subcomponents are quite unbalanced.
For example, the quarterround block is more than two times
faster than the memory. Thus, we use a frequency divider in
the circuit. In that way, the global frequency is 250 MHz, and
the frequency for the quarterround block is 125 MHz.

3.3. Basic Iterative ASIC Structure of Salsa20
The datapath of an iterative structure consists of four
quarterround function blocks, since the four rows or the four
columns are encrypted independently. The control unit is
simply a combination of a counter and a comparator.

Figure 4. Salsa20 Basic Iterative ASIC Structure

 After the start signal is asserted, the quarterround function
begins to work on the 4×4 data matrix during the odd clock
cycles. The data matrix performs a transpose function during
every even clock cycle. It takes 40 clock cycles to finish the
whole data encryption.
3.4. Fast ASIC Structure of Salsa20
There is minimal serialization of blocks in Salsa20. This
feature can be considered in two ways: (1) during a single
round, there is no communication between columns or rows;
(2) each 64-byte block is encrypted independently. This gives
a chance to implement a parallel structure, which can
dramatically increase speed by handling several blocks at the
same time.
 Employing the iterative structure of Salsa20 as a pipeline
stage, it is easy to build a pipelined structure of variable stages.
A full pipelined structure consists of twenty stages arranged in
a sequence. Adding pipelining affects latency, but compared
with the overall improvement on performance, the latency is
not dramatic.
3.5. Compact FPGA Structure of Salsa20
Usually, implementation on a Field Programmable Gate
Arrays (FPGA) is reconfigurable and more flexible due to its
specific properties. For example, memory is often a significant
expense in most applications. Today’s advanced FPGAs
provide rich on-chip memories, which are maturely designed
for compactness and speed. If properly employed, it can lead
to a significant improvement in the latency of the overall
design.

The proposed FPGA structure of Salsa20 takes advantage of
the predefined memory and makes the use of a
microprogramming controller.

Figure 5. Compact FPGA Structure of Salsa20

Since the FPGA structure employs two 32×16 bits
predefined memory and reuses the adder for compactness, the
number of states required to produce different control signals
for the datapath is largely increased. In a traditional controller
consisting of a Finite State Machine (FSM) and combinational
output logic, a large number of states can dramatically impact
the logic equations, number of gates, and clock rate. To avoid
such problems, the proposed design uses a microprogramming
controller [4]. The control information is loaded into the
memory in the initialization phase, and the controller sends
out a microinstruction to the datapath every clock cycle. It is a
flexible method, especially for further improvement, because
program changes only cause slight difference in the memory,
which contains control information.

Figure 6. Controller of Salsa20
4. SYNTHESIS RESULTS
All designs are simulated and synthesized by using Synopsys
CAD tools. Synthesis results for Phelix are illustrated in Table
1, and table 2 is for different structures of Salsa20.

Table 1. ASIC Implementation Results of Phelix
ASIC Device Throughput (Mbps) # of 2-input Nand gates

0.18 µ CMOS 260.0 12,400

To our knowledge, there are no published ASIC
implementations results for the Phelix, but a rough estimation
from the authors of [3], is that the cipher can achieve speed of
at least 200 MBps with 20,000 gates for the area. The targeted

technology is not specified. We are not aware of any published
results on the hardware design of Salsa20.

Table 2. Implementation Results of Salsa20

Structure

Compact

(ASIC)

Basic

Iterative

(ASIC)

Fast

(ASIC)

Compact

(FPGA)

Device

0.18µ

CMOS

0.18µ

CMOS

0.18µ

CMOS

Xilinx FPGA

2V250fg256 [5]

Throughput 71.2

Mbps

255
Mbps

4.8

Gbps

38

Mbps

Area

14,100

2-input

Nand

gates

23,408

2-input

Nand

gates

470,000

2-input

Nand

gates

194

CLB slices

+

4 Block RAMs

5. CONCLUSIONS
In this paper, two stream cipher candidates, Phelix and
Salsa20 of eSTREAM project are implemented in hardware
and compared in terms of performance and consumed area.

It is an unsurprising result that Salsa20 based on a compact
context is slower and consumes more area than Phelix, since it
performs a large number of invertible modifications, each of
which changes one word of the matrix in a sequential manner.
 A microprogrammed control unit and a predefined memory
were presented in a compact FPGA structure of Salsa20 to
save the area and improve the performance. It should be notice
that high speed adders often consume more area in the chip. A
more considerate choice of adders should be made with the
requirements of the specific application.

REFERENCE
[1] Homepage for the eSTREAM project: www.ecrypt.eu.org/stream.

[2] D. Bernstein, "The Salsa20 Stream Cipher", presented at

Symmetric Key Encryption Workshop, Aarhus, Denmark, May,

2005. Also available at www.ecrypt.eu.org/stream/salsa20.html.

[3] D. Whiting, B. Schneier, and S. Lucks , "Phelix - Fast Encryption

and Authentication in a Single Cryptographic Primitive",

presented at Symmetric Key Encryption Workshop, Aarhus,

Denmark, May, 2005. Also available at

www.ecrypt.eu.org/stream/phelixp2.html.

[4] B.W. Bomar, “Implementation of Microprogrammed Control in

FPGAs”, IEEE Transactions on Industrial Electronics, vol. 49, pp.

415-422, April, 2002.

[5] Xilinx Inc., San Jose, Calif., “Virtex, 2.5 V Field Programmable

Gate Arrays,” 2003, www.xilinx.com.

	Select a link below
	Return to Proceedings

