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Abstract— Pipelined statistical cipher feedback (PSCFB)
mode is a new mode of operation for block cipher encryption.
It is an improved version of conventional SCFB mode with
higher throughput. SCFB mode has the mechanism of self
synchronization to recover from bit slips during transmission
in a communication channel. The mechanism of SCFB mode
resembles output feedback (OFB) mode and cipher feedback
(CFB) mode. However it has self synchronization that OFB
mode does not and has higher efficiency than CFB mode.
To improve the throughput, PSCFB is a modified version
of SCFB that allows for the pipelining of the underlying
block cipher while still preserving the efficiency and self-
synchronizing capabilities. In this paper, the Advanced En-
cryption Standard (AES) with a pipeline architecture is used
as the block cipher in PSCFB. The PSCFB system is designed,
simulated and synthesized targeted to an Altera Cyclone IV
FPGA. The structures and processes of both the encryption
and decryption are presented. The system performance is
analyzed based on the simulation and synthesis results.

Index Terms— Block Cipher, Advanced Encryption Stan-
dard (AES), Digital Hardware, PSCFB, Mode of Operation

I. INTRODUCTION

Statistical cipher feedback (SCFB) mode of operation
[1] allows a block cipher to work as a self-synchronizing
stream cipher. Pipelined statistical cipher feedback (PSCF-
B) [2] mode uses a pipeline architecture in the block cipher
based on counter (CTR) mode. In this paper, AES [3] in
PSCFB mode with a 128 bit key is used as the block cipher
to generate keystream. Both the encryption and decryption
of PSCFB is implemented targeted to Altera Cyclone
IV FPGA [4]. Considering the trade-off between system
speed and hardware resource complexity, the hardware is
designed to minimize complexity, while still operating at a
high frequency. The design of PSCFB is illustrated in the
following sections.

II. BACKGROUND

In this section, we discuss the necessary background
selected to PSCFB mode.

A. Classical Cipher Modes

In cryptography, a mode of operation uses a block cipher
to encrypt data which is longer than one block. Block
ciphers operate on a single block of data, which contains
a fixed number of bits. In this paper, we will use B as
the size of a single block in bits. For AES, B = 128 bits.
On the contrary, stream ciphers operate on a single bit.
However, some modes of operation can make the block
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cipher work as a stream cipher. Output Feedback (OFB)
mode, Cipher Feedback (CFB) mode and Counter (CTR)
mode [5] are typical modes of operation that operate like
stream ciphers.

OFB mode feeds the B bit output back to the input.
This mechanism continuously generates the keystream for
XORing with plaintext. However, this mode requires pre-
cise synchronization between transmitter and receiver, that
is, encryption and decryption. Since OFB mode cannot self
synchronize, an extra module is needed for synchroniza-
tion. Under this circumstance, some additional resources
are required.

CFB mode feeds the ciphertext, which is the result from
XORing plaintext and output of block cipher, back to the
input. CFB is a mode of self-synchronization which means
recovering from bit slips (i.e., when one or more bits
eliminated from the received ciphertext stream). In CFB
mode, in order to recover from any number of lost bits,
only one bit can be XORed with one bit of plaintext. Hence,
from every block of B bits produced by the block cipher
CFB is very inefficient.

In CTR mode, a counter with B bits is typically used as
the input of a block cipher. The counter is loaded with an
Initialization Vector (IV) first and then increases by 1 for
each block encryption, and, hence, there is not any type
of feedback in CTR mode. The key stream produced by
the block cipher can be XORed in groups of B bits with
plaintext in encryption or ciphertext in decryption. As well,
in addition to being efficient, pipelining can be used in
CTR mode, thus improving the throughput substantially.
CTR mode is not self-synchronizing.

B. SCFB Mode

Statistical self-synchronization is proposed in [6] and
Statistical Cipher Feedback (SCFB) mode is analyzed in
[1] as a way to solve the efficiency and synchronization
problem. This mode works as OFB or CFB under different
conditions. When the system is scanning for n-bit sync
pattern in ciphertext, it works as OFB mode. In this paper,
the size of sync pattern is n = 8 bits. When the sync
pattern is found, the B bit ciphertext following the sync
pattern will be loaded as a new IV as in CFB mode. While
collecting the B bit IV, any newly recognized sync pattern
will be ignored. After the new IV has been loaded, a new

sync IV scanning sync

n bits B bits n bits

Synchronization cycle

Fig. 1. Synchronization cycle of SCFB [1].
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Fig. 2. SCFB mode with counter [2].

round of scanning will start again and the system will
return to OFB mode. Fig. 1 shows the whole process of a
synchronization cycle.

As in Fig. 2, OFB mode in the system can also be
replaced by counter mode. If a sync pattern is found, the
next B bits will be loaded to the counter as a new IV block.
During the scanning period, the counter increases by one
for each block encryption.

C. PSCFB Mode

Using counter mode instead of OFB mode makes SCFB
suitable for an improved version, which is called Pipelined
Statistical Cipher Feedback (PSCFB) mode shown in Fig.
3. Pipelining leads to high speed, which means high
throughput in the network communication. In PSCFB
mode, the length of the synchronization cycle is extended
due to pipelining. For example, if we assume AES with
L = 10 pipeline stages, the output can be expected 10
block encryptions after a sync pattern is detected. As a
result, the period when the scanning is disabled, referred
to as the blackout period, will be extended to 10 blocks of
B bits. This is illustrated in Fig. 4.

III. DESIGN

When designing the structure of hardware, speed and
area are two major factors needed to be considered. Trade-
off between how much data can be transferred in a unit time
and how many resources it costs is important. Since the
PSCFB system is designed for use in high speed networks,
the goal is to reduce the resource usage as much as possible
without affecting throughput.

For the following descriptions of the system components,
our discussion focuses on the encryption process. For the
decryption process, the roles of the plaintext and ciphertext
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queues get reversed as will be discussed at the end of this
section.

A. Counter

The general counter increments by 1 in each clock cycle.
For CTR mode in cryptography, the counter is loaded with
an IV and then incremented by 1 for each block encryption.
In our system, a linear feedback shift register (LFSR) is
used to replace the general counter. Several bits are XORed
to generate a feedback bit to be shifted into register. For a
128 bit register, a feedback expression with only 4 bits is
used: r′127 = r29⊕ r17⊕ r2⊕ r0 [7]. In this expression, ri,
0 ≤ i ≤ 127, represents a register bit, with the shift moving
from higher number bits to lower number bits and r′127
representing the next value of bit to be shifted in. The 128
bit LFSR covers 2128−1 states except for the all zero state.
Since there is the possibility that all zero IV is applied, an
LFSR with all zero state [7] is used here. The feedback
expression is modified to be r′127 = r29⊕r17⊕r2⊕r0⊕z
and z = 1 when the 127 register bits from r127 to r1 are
all zero.

B. Pipelined AES and Modified Blackout Period

For AES with 128 bit key, there are 10 rounds in total
[3]. There are four operations in each round. SubBytes
uses a S-box byte-by-byte mapping to perform substitution.
ShiftRows is a simple shift operation among different rows.
MixColumn is a 32 bit linear transformation operated
over GF (28). AddRoundKey performs bit-by-bit XOR
between the block and round key. In this paper, the AES is
implemented as a pipelined structure based on the example
from [8]. No memory is used in our implementation with
only combinational gates and registers being used.

As shown in Fig. 5, 10 pipeline registers are inserted
after AddRoundKey in each round. Each stage of the
pipeline is processed in less than a clock period. The initial
AddRoundKey and four transformations in the round 1
together form the first stage of pipeline. For the rounds 2 to
9, each stage contains SubBytes, ShiftRows, MixColumns
and AddRoundKey. For the round 10 in the last pipeline
stage, only three transformations are included as shown in
Fig. 5. When a new IV is loaded to AES, it takes 10 clock
cycles to generate the corresponding output. However, it
takes 11 clock cycles to generate the output since there is
one clock cycle to load IV on the LFSR counter. Hence,
the blackout period is extended to L = 11 blocks of B
bits.

C. Sync Pattern Scanner

The sync pattern scanner scans the ciphertext for the
n = 8 bit sync pattern with the format of 10000110. A
block diagram of this component is presented in Fig. 6.
The bottom 128 bit register receives 128 bit ciphertext and
the top register receives the data from the bottom one, thus
making up a 256 bit register with 128 bit input width. In
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most cases it takes 2 blocks of ciphertext to collect a new
IV after the sync pattern. Hence, it is a necessary to have
the double registers.

The scan logic contains the combinational logic shown
in Fig. 7 replicated 128 times. When the 8 bit sync pattern
is matched to a single scan logic part, the output is 1. For
128 scan logic parts, the scanner needs 128+n− 1 = 135
bits for scanning. So it takes full block data from the first
register and lower 7 bits from the second register. The scan
logic sends out 128 bit result to indicate if the sync pattern
is detected. However, it is likely to have more than one sync
pattern found in a block, that is, not only one 1 may appear
in the output of the scan logic. The matched sequence from
the upper bits has higher priority so that the first matched
pattern should be accepted. A priority encoder receives all
128 bits but takes the uppermost high level bit and then
encodes it. Unlike the general priority encoder, the priority
encoder in our implementation is reversed. For example,
when only in[0] = 1, which means input sequence is
in[127 : 0] = 0...0001, the output of the priority encoder
is out[6 : 0] = 1111111. If MSB in[127] = 1, the output
of the priority encoder will be out[6 : 0] = 0000000. This
encoding will make it easier for other components in the
system. The number of bits d to be transferred at the end
of blackout period exactly equals to the output code plus
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1, that is, d = code+1. Hence, the code is directly sent to
control unit of the queues discussed in sections D and E.

In order to output the correct IV, the code will also be
sent to the selector as 7 bit selection signal. The selector
is based on barrel shifter architecture. The barrel shifter
will be described in the later part. It receives 256 bits data
from the registers and shifts the selected 128 bits to fixed
positions from 254 to 127. For example, if a sync pattern
is found as register[7 : 0] = 10000110, the input of the
priority encoder will be in[127 : 0] = 0...0001 and the
output will be out[6 : 0] = 1111111 = code. Since the
128 bit new IV is right after the sync pattern, in the next
clock cycle, the incoming block at the bottom register is the
new IV. The selector will left shift data register[127 : 0]
by 127 positions, which will be presented at the output as
selector output[254 : 127].

D. Plaintext Queue in Encryption

Based on the proposed structure in [2] and illustrated
in Fig. 3, a plaintext queue and ciphertext queue are two
significant parts which can affect the speed of the PSCFB
system. They are required to ensure that while the data
processing can happen at irregular rates, the input and
output to the system maintains a constant rate. The output
of the block cipher requires the plaintext queue to transfer
B bits data to the ciphertext queue except at the end of the
blackout period where it is possible to transfer d bits with
(1 ≤ d < B). For the plaintext queue, the rate D means
that there are D bits data to be enqueued every clock cycle.
To avoid overflow in plaintext queue, D must be less than
B. Queue size M should also be large in order to guarantee
no overflow, and the minimum value is M ≥ B + 3D− 2

Fig. 7. A single scan logic for 8 bit sync pattern 10000110.
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1. However, it is inevitable that the queue will not always
have enough data to be transferred, thus causing plaintext
transfer to pause during some clock cycles.

Also, the plaintext queue and the ciphertext queue work
in a complementary manner. If the plaintext queue is being
filled up, the ciphertext queue is being evacuated at the
same time. When plaintext stops transferring data, the
ciphertext queue only sends out data. The sum of the
number of bits in the plaintext queue and the number of
bits in the ciphertext queue equals M .

The minimum size of plaintext and ciphertext queue is
M = B + 3D − 2 = 444, with B = 128 and input rate
D = 116 [2]. This provides the maximum efficiency of
D/B = 90.625% without any overflow in the plaintext
queue or underflow in the ciphertext queue.

The plaintext queue has fixed width input, which is D
bits. However, the output width is variable with 3 different
cases: (1) B bits during normal counter mode of operation,
(2) zero bits when the transfer is paused and (3) d bits with
1 ≤ d < B because of the end of the blackout period.

For the input part, one way to simplify the hardware
structure is to make the number of queue bits a multiple of
input width. For illustration, consider a small scale system
with B = 3, M = 4 and D = 2. As is shown in Fig. 8, the
input width is D = 2 bits and there are M = 4 register bits.
With a 2 bit write address, there are only two cases: (1)
the write address starts at 00 and data is sent to 00 and 01,
and (2) the write address starts at 10 and data is sent to 10
and 11. For B = 128, compared to the best case scenario
(where D = 116), using a similar structure to Fig. 8 results
in a smaller D and reduced throughput. For example, we
can select M = 320 bits with the input set to be D = 64 bit
width, thus reducing efficiency to D/B = 50%. Although
efficiency is lower than the 90.625% with D = 116, it is
still substantially higher than that of stream cipher using bit
by bit transfer or CFB mode and because M is a multiple of
D, it is very efficient to implement the enqueuing process
in the plaintext queue.

In Fig. 8, nothing is needed in the structure of output part
of the plaintext queue. Each register output Q is connected
to the D input of register bits in the ciphertext queue.

1Note that this is a correction to the constraint M ≥ B + 2D − 2
given in [2].
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Since the plaintext queue and ciphertext queue work in
a complementary way, the read address of plaintext queue
and write address of ciphertext queue are always the same.
Only the read pointer in the control unit changes.

For the small scale system, although 3 bits data are
always provided at the output, the increment of the read
address is not always the same. Assume only 1 bit is needed
at the end of blackout period. The output port provides
3 bits of data but the read address will only increase by
1. This means the downstream ciphertext queue will only
take the first bit from the plaintext queue. The remaining
2 bits will be kept in plaintext queue. Similarly in the full
scale system, if d bits (1 ≤ d < B) are to be transferred,
as discussed above in case 3, the read address will only
increase by d regardless of B bits always being available
from the plaintext queue.

E. Ciphertext Queue in Encryption

As can be seen from Fig. 9, the ciphertext queue can be
functionally regarded as the reverse of the plaintext queue.
The input width is variable and output width is D = 2
for the small scale system. All the data inputs are directly
from the outputs of the plaintext queue. One difference is
that enable signal must be considered. There are three 2-
to-1 demuxes piled up as a pyramid. Demuxes in different
layers are controlled by different bits in the read address,
that is, the read pointer in the control unit. Each D flip-flop
receives the enable signal from a 3 input OR gate. Although
the OR gate receives enable signals from different outputs,
there is only one high level signal among the three. This
structure guarantees that each three consecutive D flip flops
can be selected and enabled. Although there are 3 bits data
to be sent to the input and saved, the write address may
not increase by 3 if case 3 with d < B occurs.

Because the output width is D = 2 bits, the output part
contains two 2-to-1 muxes. One mux has data from bit
registers 0 and 2, and another mux takes data from bit
registers 1 and 3. As stated above, there are only two cases
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for output: (1) the first mux will output bit 0 and the second
mux will output bit 1, which is 00/01 in address, and (2)
the first mux gives bit 2 and the second mux gives bit 3,
which is 10/11 in address. Hence, only 1 bit of address is
enough. Similar principles can be applied in scaling up the
design to a full scale system.

F. Barrel Shifter

The barrel shifter can accomplish a cyclic shift using
minimum hardware resources. A data sequence can be
shifted by specified number of positions in one clock cycle.
Fig. 10 shows a simple 4 bit barrel shifter, which can shift
the data by 0 to 3 positions. In the first layer, the address[0]
can shift data by 1 bit. In the second layer, the address[1]
can shift data by 2 positions. Hence, for a 2 bit address of
00, 01, 10 or 11, the barrel shifter can shift input data by
0, 1, 2 or 3 positions.

For a barrel shifter operating on M bits, we would need
dlog2 Me layers of muxes. In the full scale system with
B = 128, D = 64 and M = 320, the size of the barrel
shifter is 320 bits. It uses 9 layers and each layer can shift
the data by 1, 2, 4, 8, 16, 32, 64, 128 and 256 positions.

In the PSCFB system, there are 3 barrel shifters. One
is at the output part of sync pattern scanner and the other
two are on the transfer path between the plaintext queue
and ciphertext queue. In Fig. 6, the first barrel shifter at the
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output part of sync patten scanner receives data from two
128 bit registers and shifts it to the specified position of
output port, which is from 254 down to 127. The second
barrel shifter (labelled ”A” in Fig. 11) takes 128 bit data
from pipelined AES and shifts it to the same position as
the data to be transmitted from the plaintext queue. Then
the output of plaintext queue and barrel shifter are XORed
and received by ciphertext queue. The third barrel shifter
(labelled ”B” in Fig. 11) is necessary because sync pattern
scanner and ciphertext queue have different input width.
The only difference is that this barrel shifter rotates data in
the opposite way so that output data is at the fixed position.
Fig. 11 and 12 illustrates the second and third barrel shifter,
A and B, in the PSCFB encryption and decryption systems.

G. Decryption vs. Encryption

As shown in Fig. 11 and Fig. 12, the structural difference
between encryption and decryption is that decryption does
not have the 128 bit XOR before the input of sync pattern
scanner. The positions of two queues are exchanged but the
ciphertext queue in decryption is the same as the plaintext
queue in encryption. Similarly, the plaintext queue in de-
cryption and ciphertext queue in encryption are equivalent.
For the control unit, there are only some small differences.

IV. IMPLEMENTATION AND ANALYSIS

Both the PSCFB encryption and decryption systems are
simulated and synthesized using Modelsim [9] and Quartus
II [10] targeted to Altera Cyclone IV FPGA [4].

Table 1 is a summary of resource usage by component
from the synthesis tool Quartus II. The FPGA is based on
logic elements (LEs), and a logic element contains a look-
up table (LUT) for combinational logic, and a register [4].
The encryption and decryption system cost 47% and 46%
of the resource, repectively.

In encryption, the pipelined AES component costs 85%
of the combinational logic and 54% of the registers. There
are 11 AddRoundKeys, 10 SubBytes, 10 ShiftRows and 9
MixColumns because of pipelining, thus greatly increasing
the resource usage. Since no memory is applied, key
expansion and the SubBytes operation cost the most com-
binational logic elements in AES. There are ten SubBytes
operations with each costing 3328 combinational logic
elements. Key expansion costs 8861 combinational logic
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TABLE I
RESOURCE USAGE

Entity Logic
Element

Component Combinational
Logic
Elements

Registers

Encryption
53298
LEs
47%

AES 45042 1280
LSFR 378 129
Plaintext
queue

58 329

Ciphertext
queue

2258 332

Sync pattern
scanner

1632 276

Barrel shifter
A

1259 0

Barrel shifter
B

2241 0

Decryption
53185
LEs
46%

AES 45048 1280
LSFR 378 129
Ciphertext
queue

58 329

Plaintext
queue

2367 332

Sync pattern
scanner

1646 276

Barrel shifter
A

1235 0

Barrel shifter
B

2370 0

TABLE II
TIMING ANALYSIS

Entity Maximum
Frequency

Throughput

Encryption 87.43 MHz 5.60 Gbps
Decryption 88.08 MHz 5.64 Gbps

elements. Also, 10 stages of registers cost 1280 registers.
The plaintext queue with 320 bits of register costs only
58 combinational logic elements. However, the ciphertext
queue costs more resources. The ciphertext queue with
320 bits of register costs 2258 combinational logic ele-
ments. From the design described above, it is obvious that
demultiplexers and OR gates for the enable signal are a
significant cost. The sync pattern scanner requires 1632
combinational logic elements and 276 registers. The second
and third barrel shifters need 1259 and 2241 combinational
logic elements respectively. The decryption part has similar
resource usage.

Timing analysis is also conducted using TimeQuest
Timing Analyzer [11] in Quartus II. The result is based
on the worst case operating condition, slow 85◦C, which
provides slow silicon, low voltage and high temperature
[12] and results in the slowest speed for the FPGA. For
the encryption part, the maximum speed is 87.43 MHz
and the throughput is 5.60 Gbps. For the decryption part,
it can reach the maximum frequency at 88.08 MHz and
the throughput is 5.64 Gbps. The throughput is calculated
based on an efficiency of D/B = 50%.

V. CONCLUSION

The design, implementation, simulation and synthesis of
full scale PSCFB encryption system has been investigat-
ed. The simulation results shows that the system works

successfully. In the system with 320 bit queues and 64
bit input/output width, the efficiency is down to 50%,
which is still much higher than the efficiency of bit by
bit stream ciphers or a self-synchronizing mode like CFB.
Our synthesis results indicate that in the full system, only
about 15% of the combinational logic and less than 50%
of the registers are due to the PSCFB mode. The major
resource cost comes from the pipeline structure of AES. In
the future work, a PSCFB system with input/output width
higher than 64 and queue size larger than 320 bits will be
implemented and tested to reach higher throughput.
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