
 
 
 

A COMPACT ASIC IMPLEMENTATION OF  
THE ADVANCED ENCRYPTION STANDARD  
WITH CONCURRENT ERROR DETECTION 

 
Namin Yu and Howard M. Heys 

Electrical and Computer Engineering 
Memorial University of Newfoundland 

St. John's, Newfoundland, Canada 
{namin, howard}@engr.mun.ca 

  
ABSTRACT 
In this paper, we investigate the application of concurrent 
error detection circuitry to a compact application-specific 
integrated circuit (ASIC) implementation of the Advanced 
Encryption Standard (AES). The specific objective of the 
design is to develop a method suitable for compact ASIC 
implementations targeted to embedded systems such that 
the system is resistant to fault attacks. To provide the 
error detection, recognizing that previously proposed 
schemes are not well suited to compact implementations, 
it is proposed to adopt a hybrid approach consisting of 
parity codes in combination with partial circuit 
redundancy. For compact ASIC implementations, taking 
such an approach gives a better ability to detect faults 
than simple parity codes, with less area cost than 
proposed schemes which use full hardware redundancy. 
The results of the implementation analysis in this paper 
show that it is possible to implement an error detection 
scheme that is robust to multiple faults in a compact AES 
design such that about 39% of the overall system is 
devoted to the error detection functionality. 
 
KEY WORDS 
application specific integrated circuit, cryptography, 
encryption, AES, cryptanalysis, error detection 
 
 
1.  Introduction 
 
Since the National Institute of Standards and Technology 
(NIST) announced the selection of Rijndael as the 
Advanced Encryption Standard (AES) in November 2001 
[1], AES has been accepted as the popular means to 
encrypt sensitive commercial and government data. 
Various hardware implementation architectures and 
optimizations have been proposed for different 
applications. Implementations that are compact in area, 
suitable for practical low-end embedded applications, 
such as smart cards, PDAs, cell phones, and other mobile 
devices are the focus of this paper. 
    Deliberately inducing malicious faults into 
cryptographic implementations and breaking the secret 
keys or cipher structures from the information resulting 
from faulty computations is a practical and efficient 
cryptanalysis technique called fault-based cryptanalysis, 

first proposed by Boneh, Demillo, and Lipton [2], and 
more recently applied to AES [3]. It is well understood 
that one approach to guarding against fault attacks on 
ciphers is to implement concurrent error detection (CED) 
circuitry along with the cipher functional circuit so that 
suitable action may be taken if an attacker attempts to 
acquire secret information about the circuit by inducing 
faults. 
    The objective of the research in this paper is to 
investigate a compact ASIC implementation of AES with 
concurrent error detection. It attempts to create a bridge 
between the area requirements of embedded applications 
and effective fault attack resistance, such that the system 
is able to effectively detect faults with modest area 
overhead.  
 
1.1  Advanced Encryption Standard 
 
AES is a symmetric-key block cipher with a data block 
length of 128 bits, which supports different key lengths of 
128, 192 or 256 bits. In this paper, we consider the 
implementation of the 128-bit key system only, as this is 
the most commonly implemented form of AES. 
     AES can be used to both encrypt and decrypt data. For 
the 128-bit key implementation, the encryption and 
decryption processes consist of 10 rounds of operations. 
There are four main operations on the datapath in each 
round for the encryption process, as illustrated in Figure 
1: byte-substitution, shift-row, mix-column and add-
round-key. Another important function is the key 
expansion, which takes the 128-bit key and generates 
round keys (labeled as Ki in Figure 1) to be applied to 
each round.   
    We now briefly describe the significant operations of 
the cipher. For the detailed description, the reader is 
referred to [4]. For convenience in the description, the 
128-bit data is divided into 16 bytes and arranged as a 
two-dimensional 4-by-4 array of bytes. 

(1) byte-substitution: Each byte is substituted by the 
corresponding element in a table referred as an s-
box. The s-box is an 8-bit input, 8-bit output 
component, and, hence, is represented by a table 
that contains 256 8-bit values. The byte-
substitution operation is the only non-linear 
operation in the algorithm. 



 

 
Figure 1. AES Encryption and Decryption 

 
(2) shift-row: The shift-row operation is a simple 

transposition operation on the bytes of each row 
in the array. The first row has no shift, the 
second row has a left rotation of 1 byte, the third 
row has a left rotation of 2 bytes, and the last 
row has a left rotation of 3 bytes.  

(3) mix-column: In this operation, a fixed array is 
used to perform multiplication using modulo x4 
+1 with each column over GF(28). For 
encryption, the mix-column operation is 
performed at each round except the last one. 

(4) add-round-key: The add-round-key operation is a 
bit-wise exclusive-or (XOR) operation of the 
whole data block and round key. There is one 
key addition operation before the first round for 
pre-whitening. 

(5) key expansion: The key expansion algorithm, or 
key expander, can take an initial key of length 
128 bits, 192 bits or 256 bits. For a 128-bit key, 
the key expander takes the 128-bit initial key as 
four 32-bit words of input and generates 40 
words to provide each of the 10 rounds with a 4-
word round key.  Each of the round keys 
depends on the key of the previous round. 

    The decryption process for AES has a slightly different 
structure from encryption. However, with some changes 
in the operation order and the key expansion function, an 
equivalent decryption structure can be achieved using 
inverse functions for the byte-substitution, shift-row and 
mix-column operations. 
 
1.2  AES Hardware Implementations 
 
The AES algorithm has a simple structure and can be 
implemented efficiently on a wide range of platforms. 

Although the software realization of the AES algorithm 
can lead to relatively high throughput when compared to 
other block ciphers, hardware implementations such as 
special purpose cryptographic processors are desirable in 
many practical applications. Hardware implementations 
can generally be viewed as falling into one of two 
categories: (1) high-speed implementations and (2) 
compact implementations. In this paper, we focus on the 
compact implementation of AES targeted to lower speed 
systems such as cell phones and PDAs and other 
embedded systems, such as smart cards. In these 
applications, the main concern is to minimize the area and 
limit power consumption of the design.  

Compact AES hardware implementations are typically 
iterative designs based on one-round or quarter-round 
loop architectures, with the application of design 
techniques for hardware resource sharing such as the 
merging of the encryption and decryption datapaths and 
the reuse of components between the datapath and key 
expander.  
    Several papers have reported compact designs for AES 
ASIC implementation.  For example, in [5], the design 
uses a methodology to minimize the s-box component 
area using arithmetic operations in a composite field of 
the form GF(((22)2)2). The cipher architecture uses an 
iterative quarter-round structure. That means the width of 
the datapath is 32 bits, so that four s-boxes are processed 
each pass of the loop. Hence, a full round of 128-bit data 
needs four clock cycles to be finished. The hardware 
resources are efficiently shared between the encryption 
and decryption processes, including the sharing between 
s-box and inverse s-box and mix-column and inverse mix-
column. The s-boxes are reused between datapath and key 
expander as well. The key expander generates the round 
keys on-the-fly, saving the memory area needed to store 



the pre-computed keys. The design produced is an 
extremely small 128-bit key AES circuit of 5.4k gates 
based on a 0.11 � m CMOS standard cell library and the 
system has a throughput of 311 Mbps. 
    A more recent compact implementation of AES [6] is 
able to achieve an even lower gate count of about 3.4k 
gates for the circuit in 0.35 � m CMOS technology. 
Additionally, the circuit is designed for low power 
consumption. This is principally achieved with an 
iterative design based around the use of only one s-box in 
each iteration. As a result, the speed of the circuit is 
dramatically less than other designs and is only 9.9 Mbps. 
    In the work presented in this paper, we have chosen to 
focus on the iterative architecture based on the quarter-
round or four s-box iteration, as we have assumed that the 
speed penalty paid for a reduction in circuit size as in [6], 
is undesirable for many applications. 
    It should also be noted that several papers have 
investigated the low complexity implementation of the 
AES s-box [5, 7, 8]. This work principally focuses on the 
implementation of the s-box based on composite field 
representation in GF(((22)2)2) or GF((24)2). In [9], various 
s-box implementations are considered and the 
implementation of [7] is selected for the design presented 
in this paper for its low complexity and performance. 
 
1.3  Fault-Based Cryptanalysis 
 
Although today’s hardware implementations are relatively 
reliable, it is still possible and practical for opponents to 
intentionally induce faults into hardware computations, 
especially for small, portable devices such as smartcards 
and other embedded systems. Fault-based cryptanalysis is 
a powerful attack technique that deliberately injects faults 
into the cryptographic devices and exploits the fact that 
the erroneous computations leak secret parameters or 
sensitive information about the cipher. This attack idea 
was first proposed in [2] and, subsequently, in [10], the 
attack was extended to symmetric cryptosystems such as 
DES. Fault analysis has now been applied to AES [3].  
Different fault-based attacks are associated with different 
assumptions for fault models. As noted in [3], attacks 
must consider several aspects of a fault model such as (1) 
whether the fault is permanent or transient, (2) whether 
the fault location and/or timing of the fault can be 
controlled, (3) the type of fault (eg. bit flip or stuck-at-
0/1), and (4) the number of faults induced. The results 
show that AES is sensitive to fault-based attacks and the 
recovering of the secret key can be achieved by using a 
small number of faulty ciphertexts under certain hardware 
fault models. 
 
1.4  Concurrent Error Detection for AES 
 
Concurrent error detection checks the system operation 
during the computation to guarantee the system output is 
correct. If an erroneous output is produced, CED will 
detect the presence of the faulty computation and the 
system can discard the erroneous output before 

transmission. Thus, the encryption system can achieve 
resistance to malicious fault-based attacks. Any CED 
technique will introduce some overhead into the system 
since circuitry must be added that predicts the system 
output or some characteristic parameter of the system 
output used to check the correctness of the system.  
 
(i) Techniques Based on Hardware or Time Redundancy 
 
Straightforward duplication of the encryption hardware 
for self-checking is the simplest form of the redundancy 
technique for concurrent error detection. The output of the 
duplicated circuit is compared with the result of the 
original hardware, and any mismatch means the detection 
of errors. The method can detect any type or any number 
of fault injections if the duplicated module is fault-free, 
and is highly likely to detect any errors even if faults 
occur in both the original and duplicated hardware as long 
as the faults do not occur at the same location. Since the 
original circuit and duplicated module are working 
simultaneously, this technique does not cause any notable 
time delay or degradation of the original hardware 
performance. However, it requires considerable hardware 
overhead of more than 100%. Therefore, this method is 
not suitable for area critical applications.  
    The time redundancy technique involves encrypting or 
decrypting the same data a second time using the same 
datapath and comparing the two results. This method has 
more than 100% time overhead and is only applicable to 
transient faults. For permanent faults in the circuit, since 
the same faults occur in both computations, the system 
can not detect errors. 
    A hardware and time redundancy approach for the AES 
system was proposed in [11] by employing the inverse 
relationship between the encryption and decryption 
process. This method performs a test decryption of the 
encrypted data and then checks if the decrypted data 
matches the original message or not. The authors 
exploited the inverse relationship between the encryption 
and decryption process at the algorithm level, round level 
and individual operation level. The method is able to 
detect any type and any number of faults, but it needs a 
separated datapath for encryption and decryption. 
Compared to an encryption/decryption integrated 
datapath, like the AES compact implementation to be 
presented in this paper, this method results in more than 
100% hardware overhead.  
 
(ii) Techniques Based on Error Detection Codes 
 
Error detection coding techniques have been applied to 
CED in block ciphers in several papers and the fault 
detection coverage usually depends on the particular 
adopted coding schemes and hardware implementation 
details.  
    A simple parity check, with the advantage of low 
hardware overhead, has been proposed as a CED method 
for AES in [12] and [13, 14]. The detection latency and 
fault detection coverage depend on how many parity bits 



the system uses and the locations of the checking points. 
In [12], a low-cost approach of concurrent parity checking 
for the AES algorithm is proposed. In this method, a 
simple parity bit for a 128-bit data block is used and this 
parity is modified at each step of the AES algorithm to 
generate the prediction of the output parity. The predicted 
parity is then compared to the actual output parity of each 
round to detect if there is any error in the system. The 
checking points are set at the end of every round, so the 
detection latency is the time needed to process data for 
one round. The parity prediction of the cipher's linear 
operations (i.e., shift-row, mix-column and add-round-
key) is straightforward and the prediction of the non-
linear byte-substitution is accomplished by using an extra 
output bit associated with each s-box to predict the output 
parity of the s-box. This approach is well suited to 
memory-based s-box implementations and, in this 
context, it is guaranteed to correct single bit faults. 
However, since only a single parity bit is used for the 
128-bit datapath, this implementation will not detect 
many multiple fault scenarios. Further, a single parity bit 
for an s-box output does not provide a robust error 
detection for compact ASIC implementations of AES, 
such as the one proposed in this paper, which use a 
combinational-logic based s-box implementation, since it 
is possible for some types of single faults (that occur 
within the s-box logic), as well as many other multiple 
fault scenarios, to be undetectable. 
     The method presented in [13, 14] is similar to [12], but 
it associates one redundant parity bit with each byte of the 
128-bit data block. Thus the parity code for this approach 
uses 16 bits. This 16-bit parity code uses more hardware 
overhead for parity code storage and prediction, but it has 
better fault detection coverage than the 1-bit parity code 
scheme. However, again the approach uses a parity bit 
prediction of the output of s-box assuming a memory-
based s-box implementation and is therefore not well 
suited to compact ASIC implementations in that many 
single and multiple fault scenarios will be undetectable. 
    Other CED methods include systematic nonlinear error 
detection codes [15]. This scheme has better fault 
detection coverage than a normal linear code, and the 
design introduces a linear predictor to protect the 
encryption, decryption and key expander with about 75% 
hardware overhead for FPGA implementations. 
Unfortunately, the overhead analysis in [15] does 
adequately describe the design of AES and it is not clear 
that the results for a compact implementation would not 
be worse. Also, recently, in [16], the application of cyclic 
redundancy checks to error detection in AES is presented. 
Several techniques are considered varying from schemes 
such as a pure-parity approach to a hybrid of parity and 
redundancy. Unfortunately, although the authors do 
discuss the overhead associated with each scheme, they 
do not examine an actual implementation to characterize 
the impact of the concurrent error detection on the area of 
real implementations. 
    In this paper, we examine the application of a hybrid 
concurrent error detection scheme in the context of an 

actual implementation of a compact ASIC design of AES. 
Our proposed scheme has the advantage that it is effective 
for implementations that do not rely on memory-based s-
box structures. As a result, most multiple faults and all 
single faults can be detected and, as shown, the area 
overhead is modest, especially when it is considered that 
the targeted design is a compact architecture.  
 
2.  A Compact AES Implementation 
 
In this section, we outline a compact AES 
implementation, first referred to in [9] and detailed in 
[17].  In terms of hardware implementation, s-boxes are 
the most complex components in the AES algorithm and 
the s-boxes have an important influence on the area, speed 
and power consumption of the overall AES system. 
Hence, in [9], the iterative structure and three methods of 
compact s-box implementation were investigated through 
synthesis targeted at 0.18 � m CMOS technology. Based 
on the studies, by considering the trade-off of area and 
speed, it was decided to focus the design investigation on 
an architecture based on a quarter-round iteration (i.e., 
processing of 4 s-boxes per pass of the iterative loop) 
using s-boxes constructed based on a composite field 
representation of the form GF((24)2) [7].  
 
2.1 Encryption/Decryption Architecture with Key 
Expansion 
 
In the compact design, the encryption and decryption 
functionality are merged into one equivalent architecture 
and circuitry is provided for key scheduling on-the-fly 
(that is, in parallel with the datapath) for encryption and 
decryption. The hardware components are shared as much 
as possible to reduce the circuit size. The 
encryption/decryption architecture is shown in Figure 2, 
where the unlabelled boxes in the diagram represent 
registers. Since the architecture operates on 32 bits of 
datapath per iteration, a full round requires four iterations. 
The 32-bit shift registers not only work as data registers 
but also implement the shift-row operation.   
    In order to share the hardware resources between the 
encryption and decryption processes, it is necessary to 
modify the order of operations for the structure. Firstly, 
the order of byte-substitution and shift-row for the 
encryption process is exchanged. Since both of the 
operations are byte-oriented, this does not alter the result 
of the round. The second change of structure involves 
exchanging the order of mix-column and add-round-key 
for the decryption process. This change causes a 
corresponding change in the key expander such that the 
inverse mix-column is added at the end of key scheduling 
function.   Also the multiplicative inverse in GF(28) for 
the s-box and inverse s-box is shared, as well as the 
hardware between mix-column and its inverse operation. 
    The key expander needs the byte-substitution operation 
to generate the key for encryption and decryption. Since 
the s-box is the most costly component in the circuit, 
sharing between the datapath and the key expander is a 



 
Figure 2. Encryption-Decryption Datapath 

 
 

 
Figure 3. Encryption-Decryption Key Expander               

 
good method to reduce the circuit size. Multiplexers are 
used after the shift-row operation to select to process 
cipher data or the round key. The key is taken after byte-
substitution back to the key expander to continue the key 
process. This sharing of s-boxes causes an increase of one 
clock cycle in the datapath for each round in the 
encryption and decryption. The key expander circuit is 
illustrated in Figure 3. 

2.2  Hardware Complexity Analysis 
 
The complete AES algorithm has been designed, 
simulated, and synthesized using the 0.18 � m CMOS 
standard cell library with the Synopsys Design Analyzer 
as the design tool. Synthesizing based on minimizing the 
area of the circuit resulted in about 6.7k gates with the 
throughput of the circuit being 112 Mbps. The resulting 



relative complexities of the various components are given 
in Table 1. 

 
(a) Datapath 

 

 
 (b) Key Expander 

 

 
(c) Complete AES System 

 
Table 1. Complexity of Compact AES Implementation 

 
3.  Concurrent Error Detection Applied to 
Compact AES 
 
In this section, we now consider the application of an 
effective error detection scheme to the compact AES 
implementation described in the previous section. The 
proposed scheme is capable of detecting single bit errors 
caused by maliciously induced faults by attackers, as well 
as most multiple error scenarios. Subsequent to error 
detection, appropriate action is taken to suppress release 
of the flawed ciphertext from the system, thereby 
minimizing the cipher's susceptibility to fault-based 
attacks.  
 
3.1   Proposed Scheme for Error Detection 
 
Based on the review of concurrent error detection 
techniques and proposed schemes for CED of AES, we 
have investigated an error detection approach for our AES 
implementation that is a hybrid scheme combining both 
parity checking and hardware redundancy techniques. 
Although multiple parity bits can be an effective 
mechanism for detecting single and multiple bit errors, 
applying a parity bit to the s-box output is not useful 
when a fault is induced inside the combinational circuit of 
the s-box resulting in an even number of errors at the s-
box output that can not be detected. Therefore, hardware 
redundancy for the s-boxes is particularly attractive when 

the s-boxes are implemented using a compact approach 
realized as combinational logic. For the mix-column, 
shift-row and add-round-key operations, the parity 
checking schemes are effective with small cost, so parity 
checking is adopted for these operations. The proposed 
scheme is implemented and analyzed based on our 
compact hardware implementation of the AES algorithm, 
and the CED scheme is applied to the whole AES system 
including the encryption/decryption datapath and key 
expander.  
    A multiple-bit parity code similar to [13, 14] is adopted 
instead of the 1-bit parity code of [12] even though the 1-
bit parity code has smaller hardware overhead, because 
the multiple-bit parity code achieves better fault detection 
coverage for multiple faults. Each bit in the parity code 
represents a parity bit for each byte in the data. However, 
our scheme differs from [13, 14], in that the s-boxes are 
duplicated while using parity prediction for other 
components in the system, rather than using a pure parity-
based scheme which favours a memory-based 
implementation of the s-boxes. For parity prediction of 
mix-column, the same modification algorithm as in [13, 
14] is used. Check points are placed within each round to 
achieve good detection latency and higher fault detection 
coverage. The objective of the design is to yield fault 
detection coverage of 100% for the single faulty bit model 
and high coverage for multiple fault scenarios, assuming a 
fault model of a transient or permanent fault as a stuck-at-
0 or stuck-at-1 fault in combinational logic and gate 
wiring or a bit-flip fault in registers.  
    The hybrid CED scheme applied to the quarter-round 
iterative structure is shown in Figure 4. The variables sr0, 
sr1, sr2 and sr3 are four bytes of data in the row r, and pr0, 
pr1, pr2 and pr3 are their corresponding four parity bits. 
Here we will explain the parity prediction and checking 
for each operation in more detail: 

Data Registers and Shift-Row: A parity generator is 
needed to generate the parity code of the original and 
updated data and put a 4×4 parity code into four 4-bit 
shift registers according to the corresponding data 
byte position. These small parity shift registers are 
shifted and loaded with the same pace as the data 
registers. A parity checker is placed at the output of 
the registers to detect the fault in the data registers 
and shift-row transformation. 
Byte-Substitution: Since the simple parity checking is 
not sufficient for the combinational logic of the s-box 
based on arithmetic in GF((24)2), the s-boxes are 
duplicated in hardware. An equality checker is 
located at the output of the s-boxes to check any fault 
in s-box computation. Moreover, another parity 
generator is needed to generate the new parity bits 
after the byte-substitution transformation for the use 
of parity checking of mix-column.  
Mix-Column: The same mix-column (and inverse 
mix-column) parity prediction method as in [13, 14] 
is adopted. After the mix-column operation, a check 
point is applied to detect any fault that may have 
occurred. 

Component Complexity (% area) 
enc/dec s-boxes 24.7 

data registers 22.7 
mix-column+inverse 7.1 

XORs 5.0 
multiplexers 2.6 

Total 62.1 

Component Complexity (% area) 
registers 12.5 

multiplexers 10.4 
inverse mix-column 7.1 

XORs 4.2 
round constant calculation 1.3 

Total 35.5 

Component Complexity (% area) 
enc/dec datapath 62.1 

key expander 35.5 
system controller 2.4 



 

⊕

 
 

Figure 4. Hybrid CED Structure 
 
Add-Round-Key: Since this operation is simple XOR 
gates, the prediction for the new parity is just the 
XOR between the old parity and round key parity for 
each byte. Also, a check point is applied after this 
operation. 

    The CED scheme is able to detect all single faults 
occurring at the input of each round, between the round 
operations or inside of each round operation. Because all 
single faults inside of mix-column result in an odd 
number of erroneous bits at the output, the resulting errors 
can be detected by parity checking [13]. Since the shift-
row and add-round-key operation are simply implemented 
by wiring and XOR gates, all single faults result in a 
single error as well, which can be detected by parity 
checking. If a single fault is injected inside of the s-box 
circuit, the comparison of the faulty s-box output with the 
unfaulty s-box output will ensure that the fault is detected. 
    For multiple faults, the situation is more complex. For 
the portions of the circuit protected by the parity code, 
faults that result in an odd number of errors can be 
detected. As well, faults that result in an odd number of 
errors in a byte of the datapath will also be detected, even 
if the total number of errors is even. The parity code can 
not detect the faults that result in an even number of 
errors such that all bytes have an even number of errors. 
For the s-boxes, since the scheme is based on the 
duplication of s-box computation, all multiple fault 
scenarios will be detected, except for the unlikely cases 
where the same errors occur at the output of both s-box 
sets.  
    The system can detect the errors shortly after the faults 
are induced because the detection latency is only the 
output delay of each operation. Once an error is detected, 
the data currently being processed is discarded. Since the 
key scheduling uses similar functions as the datapath, a 

similar CED approach has been applied to the key 
expander. 
 
3.2   Hardware Complexity Analysis 
 
We have implemented the hybrid CED scheme for our 
AES compact hardware implementation, including both 
the encryption/decryption datapath and key expander. The 
system was synthesized to minimize area and, hence, can 
be compared to the original synthesized circuit without 
CED, which resulted in 6.7k gates. The resulting circuit 
for the AES system with concurrent error detection 
requires an area equivalent to 10.9k gates, with 39.1% of 
the circuit dedicated to CED. This is equivalent to an area 
overhead of 64.3% with respect to our original compact 
AES hardware system. A summary of the overhead of the 
scheme is shown in Table 2. 
 

Component 

Original 
Circuit 

(without 
CED) 
(gates) 

CED Circuit 
(gates) 

CED 
Overhead 

datapath 4228 2555 60.4% 
key expander 2428 1613 66.4% 

complete system 6656 4278 64.3% 
 

Table 2. Complexity of Hybrid CED Scheme 
 
 
3.  Conclusion 
 
The primary focus of this paper has been the study of a 
compact hardware implementation of the AES system 
with concurrent error detection. The AES implementation 
is aimed at area-critical embedded applications, such as 



smart cards, PDAs, cell phones, and other mobile devices. 
The proposed hybrid CED scheme achieves effective 
detection for single faults and most multiple faults with 
about 39% of the final compact AES system dedicated to 
the CED functionality.  
 
Acknowledgements 
 
This work was supported by the Natural Sciences and 
Engineering Research Council of Canada (NSERC) and 
CMC Microsystems. 
 
References 
 

[1] National Institute of Standards and 
Technology (NIST), "Advanced Encryption 
Standard (AES)", Federal Information 
Processing Standard Publication 197, Nov. 
2001. Available at: 
http://csrc.nist.gov/publications/fips/fips19
7/fips-197.pdf 

[2] D. Boneh, R.A. DeMillo, and R.J. Lipton, 
"On the Importance of Checking 
Cryptographic Protocols for Faults", 
Advances in Cryptology – EUROCRYPT 
'97, Lecture Notes in Computer Science, 
vol. 1233, Springer, pp. 37-51, 1997. 

[3] J. Blomer and J. Seifert, "Fault Based 
Cryptanalysis of Advanced Encryption 
Standard (AES)", Financial Cryptography 
(FC 2003), Lecture Notes in Computer 
Science, vol. 2742, Springer, pp. 162-181, 
2003. 

[4] J. Daemen and V. Rijmen, "The Design of 
Rijndael: AES - The Advanced Encryption 
Standard", Springer, 2002. 

[5] A. Satoh, S. Morioka, K. Takano, and S. 
Munetoh, "A Compact Rijndael Hardware 
Architecture with S-box Optimization", 
ASIACRYPT 2001, Lecture Notes in 
Computer Science, vol. 2248, Springer, pp. 
239-254, 2001. 

[6] M. Feldhofer, J. Wolkerstorfer, and V. 
Rijmen, "AES Implementation on a Grain 
of Sand", IEE Proceedings on Information 
Security, vol. 152, no. 1, pp. 13-20, 2005. 

[7] J. Wolkerstorfer, E. Oswald, and M. 
Lamberger, "An ASIC Implementation of 
the AES SBoxes", The Cryptographer's 
Track at the RSA Conference (CT-RSA 
2002), Lecture Notes in Computer Science, 
vol. 2271, Springer, pp. 67-78, 2002. 

[8] D. Canright, "A Very Compact S-box for 
AES", Workshop on Cryptography 
Hardware and Embedded System (CHES 
2005), Lecture Notes in Computer Science, 
vol. 3659, Springer, pp. 441-456, 2005. 

[9] N. Yu and H.M. Heys, "Investigation of a 
Compact Hardware Implementation of the 
Advanced Encryption Standard", Canadian 
Conference on Electrical and Computer 
Engineering (CCECE 2005), 2005. 

[10] E. Biham and A. Shamir, “Differential 
Fault Analysis of Secret Key 
Cryptosystems,” Advances in Cryptology - 
Crypto '97, Lecture Notes in Computer 
Science, vol. 1294, Springer, pp. 513-525, 
1997. 

[11] R. Karri, K. Wu, P. Mishra, and Y. Kim, 
“Fault-based Side-channel Cryptanalysis 
Tolerant Rijndael Symmetric Block Cipher 
Architecture,” IEEE International 
Symposium on Defect and Fault Tolerance 
in VLSI Systems (DFT'01),  2001. 

[12] K. Wu, R.Karri, G. Kouznetzov and 
M.Goessel, “Low Cost Concurrent Error 
Detection for the Advanced Encryption 
Standard,” International Test Conference 
2004 (ITC 2004), pp. 1242-1248, 2004. 

[13] G. Bertoni, L. Breveglieri, I. Koren, P. 
Maistri and V. Piuri, “Error Analysis and 
Detection Procedures for a Hardware 
Implementation of the Advanced 
Encryption Standard,” IEEE Transaction 
on Computers, vol. 52, no.4, pp. 492-505, 
April 2003.  

[14] G. Bertoni, L. Breveglieri, I. Koren, and P. 
Maistri, "An Efficient Hardware-Based 
Fault Diagnosis Scheme for AES: 
Performance and Cost", IEEE International 
Symposium on Defect and Fault Tolerance 
in VLSI Systems (DFT '04), 2004. 

[15] M. Karpovsky, K. Kulikowski, and A. 
Taubin, “Robust Protection against Fault-
Injection Attacks on Smart Cards 
Implementing the Advanced Encryption 
Standard,” International Conference on 
Dependable System and Networks (DSN 
’04), 2004. 

[16] C-H. Yen and B-F Wu, "Simple Error 
Detection Methods for Hardware 
Implementation of Advanced Encryption 
Standard", IEEE Transactions on 
Computers, vol. 55, no. 6, pp. 720-731, 
2006. 

[17] N. Yu, "Compact Hardware 
Implementation of AES with Concurrent 
Error Detection", M.Eng. Thesis, Memorial 
University of Newfoundland, 2005. 

 


