
An Improved Power Analysis Attack Against Camellia’s

Key Schedule

Lu Xiao? and Howard M. Heys†

? QUALCOMM Incorporated

lxiao@qualcomm.com

† Electrical and Computer Engineering

Memorial University of Newfoundland

howard@engr.mun.ca

September 22, 2005

Abstract

This paper presents an improved simple power analysis attack against the key
schedule of Camellia. While the original attack required an exact determination of the
Hamming weight of intermediate data values based on power measurements, in this
paper, two variants of the simple power analysis attack are presented and shown to be
tolerant of errors that might occur in the Hamming weight determinations. In practical
applications of the attack such errors are likely to occur due to noise and distortion
in the power measurements and their mapping to the Hamming weights of the data.
Further, we propose a practical method to evaluate the susceptibility of other block
ciphers to simple power analysis attacks. To resist these attacks, the required design
rationale of key schedules and several practical countermeasures are suggested.

1 Introduction

Proposed by NTT and Mitsubishi in 2000, Camellia [1] is a 128-bit block cipher with a Feistel

round structure and supports 128-, 192-, and 256-bit keys. Two logic functions (called FL-

and FL−1-functions) are inserted every 6 rounds for security enhancement. It has been

shown in [2, 3, 4] that Camellia is well designed to resist differential, linear, and integral

1

attacks. Camellia was included together with AES [5] into the NESSIE portfolio of 128-bit

block ciphers in February 2003 [6].

Introduced in [7], power analysis exploits the fact that the power consumption of some

cryptographic implementations, such as smart cards, is dependent on the intermediate data

values. It is indicated in [8] that there is a roughly linear relation between the Hamming

weight of the data and the power consumed at the associated clock cycle. The Hamming

weight attack against the key schedules of DES and AES were discussed in [9, 10], and it

is shown that the cipher key can be successfully deduced given accurate leakage informa-

tion of Hamming weights. The susceptibility of NESSIE candidates to power attacks was

theoretically evaluated in [11], which mainly focused on differential power analysis and gave

Camellia a high rank among others.

In [12], it is shown that Camellia is susceptible to a simple power analysis attack un-

der the assumption of an exact correlation between power measurements and the Hamming

weights of intermediate data values. In this paper, we modify the attack to make the attack

robust in the presence of errored Hamming weight values derived from noisy power measure-

ments. Since real Hamming weight determinations are not likely to be error free, the modified

attack represents a significant improvement in the attack and raises increased concerns over

the susceptability of Camellia to power attacks. Also in this paper, a method is proposed

to evaluate how vulnerable a block cipher is toward similar attacks and countermeasures in

terms of both design rationale and implementation are suggested.

2 Description of Camellia’s 128-Bit Key Schedule

The attack described in this paper is focused on Camellia’s 128-bit key schedule [1]. The

attacking technique to be discussed can be easily modified for 192- and 256-bit key schedules.

Camellia’s 128-bit key schedule expands 26 subkeys of 64 bits from the original key KL

and another derived key KA of 128 bits. Each subkey can be obtained as one half of KL or

KA after they are left rotated for a specific number of bits. This number can be 0, 15, 30

(only for KA), 45, 60, 77 (only for KL), 94, or 111, depending on the round number. During

2

encryption or decryption, 16 subkeys are used for the round function in the 16 rounds. The

other 8 subkeys are used for pre-, post-whitening and the FL-, FL−1-functions.

KA is derived from the original key KL through a Feistel network. As shown in Figure 1,

KL is the input of such a network. The left half is the input to the same round function as in

encryption. The round function can be divided into 3 steps: (1) a 64-bit constant, denoted

as Σi for round i, is eXclusive-ORed (XORed) with the input, (2) the S-function performs

byte-wise bijective substitution, and (3) the P -function performs a linear transformation.

The output of the round function is XORed with the right half of the round input. The

two halves are then swapped. This Feistel structure is iterated 4 rounds for the 128-bit key

schedule. Note that the intermediate result after 2 rounds is XORed with KL to form the

next round input. Each 64-bit block in Figure 1 is labelled as Ti, 0 ≤ i ≤17.

3 Hamming Weight Attack

The Hamming weight attack exploits the relation between data and its Hamming weight. If

the Hamming weight can be captured from a poorly designed cryptographic device, we can

use it to eliminate those data candidates failing to meet this relation. The original simple

power analysis attack, based on exact Hamming weight information is presented in [12]. In

this section, we present some of the basic concepts of the attack, in order to provide the

context to understand the attack variants, presented in the next section.

Given a Hamming weight of h for a particular byte, there are

(

8
h

)

byte values consis-

tent with this weight. Hence, as deduced in [13, 10], the number of byte values consistent

with a Hamming weight is expected to be

8
∑

h=0

Prob{H = h}

(

8
h

)

=
8
∑

h=0

1

256

(

8
h

)2

≈ 50.27 . (1)

Thus, to attack a block cipher with 128-bit key running on an 8-bit processor, the leakage of

Hamming weight information for each key byte straightforwardly enables attackers to reduce

the possible key space from 2128 to 50.2716 (≈ 290.43). However, dependent on the nature of

a block cipher, the outcome of a Hamming weight attack could be much better than this

reduced workload if many intermediate values are derived from a small subset of key or

3

⊕ Σ1

S-function

KL

KA

T0 T1
T2

T3

T4

T9 T5

T9 ⊕ T0= T8 T5 ⊕ T1= T4

T8

T13

P-function

⊕ Σ2

S-function

T5 T0
T6

T7

T8 P-function

⊕ Σ3

S-function

T10

T11

T12 P-function

⊕ Σ4

S-function

T14

T15

T16 P-function

T17

⊕ KL

T13

Figure 1: Camellia’s 128-bit Key Schedule

subkey bits.

3.1 Basic Power Leakage Model

A popular power leakage model was proposed in [8] with two assumptions. One assumption

is that the processor leaks the Hamming weights of data being processed. It is also assumed

that the power consumed by the processor demonstrates a linear relation to the Hamming

weight of the processed data. As defined in [8], the power consumption at a specific time j

4

is

P [j] = ε · H[j] + L + n (2)

where H[j] is Hamming weight at time j, L is the additive constant portion in the power

trace, ε is a power-related constant, and n is a random variable with zero mean representing

noise. In the basic model, we assume that the power consumption monotonically varies

in relation to the change of the Hamming weight of processed data. Hence, the power

consumption is

P [j] = f(H[j]) + L + n (3)

where f(·) is a monotonically increasing or decreasing function. In the basic model, we

assume that the influence of L and n can both be ignored by averaging and offsetting the

power traces. Therefore, the Hamming weight can be reliably quantized from P [j]. The

attack discussed in [12] is based on this model.

3.2 Requirements for the Attack

In general, in order to launch a Hamming weight attack, the following prerequisites have to

be satisfied.

• Access to the power consumption. The attacker needs to collect the power consumption

traces from the cryptographic device when the same cipher key is used. A typical

approach is to sample the power dissipated by a small resistor, which is inserted between

external power or ground and its corresponding pin on the smart card.

• Ability to identify the clock cycles for individual steps in the key schedule. For example,

if the attacker knows the implementation well (e.g., a former employee), the timing

information can be easily determined. Alternatively, a general method is suggested

in [9] to distinguish the periods used for the key schedule from periods associated with

data processing. The basic idea is to execute the protocol many times on several smart

cards, each with different user information. Then, statistical analysis is performed

to identify those clock cycles in which the same card behaves similarly with various

data to be encrypted but different cards behave differently even if the same data is

5

encrypted. These clock cycles are assumed to be used for the key schedule. Within

these periods, the attacker can identify the clock cycles for specific operations based on

features of the key schedule (e.g., DES and IDEA [14] both have rotations for subkey

generation).

• Monotonic relation between power and Hamming weight. The power consumed by the

attacked device has to be at least a monotonic function of the Hamming weight of

processed data. Although the basic power leakage model of (2) is linear, as well as

monotonic, in fact, the monotonic nature of the function is sufficient.

• One pair of plaintext and ciphertext. The Hamming weight attack is expected to reduce

the key space to a small subset. The cipher key is then distinguished by checking

whether one hypothesized key can be used to encrypt the plaintext to the expected

ciphertext. For Camellia, when enough Hamming weights can be collected, we can

deduce all key bits with certainty without requiring a plaintext encryption and in this

case, this requirement is not necessary.

3.3 Basic Attack Against the Key Schedule

In Section 3 of [12], the basic simple power analysis attack of Camellia’s key schedule is

presented. The attack is described as it is applicable to 8-bit smart card implementations

of Camellia. The attack assumes that the Hamming weight determinations of intermediate

data byte values are exact. That is, the power measurement noise is small enough that the

power measurements can be perfectly translated into the corresponding Hamming weights,

with no errors in the derived Hamming weights. The attack is divided into 2 steps: the first

step exploits the rotational relations between KL and the resultant subkeys and the second

step exploits relations in the derivation of KA from KL. The basic principle of the attack is to

use the Hamming weights of certain byte partitions determined from power measurements

to verify the correctness of candidate partial keys. This is done by having the Hamming

weights of intermediate data values during the key scheduling tested for consistency with

candidate partial keys. If the candidate partial key is not consistent with the determined

Hamming weight, the candidate partial key is discarded. This is continued until all but the

6

one correct candidate is left or until there are few enough potential candidates left to easily

determine the correct key through exhaustive search. The attack in [12] is presented using

identical notation to this paper and we refer the reader to [12] for the details.

In [12], the attack is applied to Camellia’s 128-bit key schedule with 10,000 randomly

generated sample keys. The experimental results listed in Table 1 show that 2 rounds of

Hamming weight checks in KA’s derivation is enough for unique key identification in most

cases. It costs less than 5 ms to compute the possible key candidate(s) in a PIII 933MHz

computer with 512 MB memory.

Table 1: Experimental Attack Results with 104 Samples of 128-Bit Camellia Cipher Keys [12]

Scope of HW checks T0 ∼ T7 T0 ∼ T8 T0 ∼ T9 T0 ∼ T10

in KA’s derivation
Percentage of case 14.04 % 97.49 % 99.98 % 100 %
identification with unique key
Ave. # of spurious keys 5.3588 0.0264 0.0002 0

3.4 Extension to 192-Bit and 256-Bit Key Schedules

When the key size is 192 or 256 bits, KL is the first 128 key bits. The remainder of the key

is denoted as KR, which is also rotated to generate subkeys. For 192-bit keys, KR’s right

64 bits are padded with the complement of its left 64 bits. The input of KA’s derivation is

changed from KL to KL ⊕ KR. Another derived key KB is obtained through two rounds of

Camellia’s encryption structure with KA ⊕ KR as input.

Similar to the attack against the 128-bit key schedule but in the reverse direction, the

attack begins with the last round of the Feistel structures used to derive KA and KB. Com-

bined with Hamming weight checks during the rotations used in the generation of subkeys,

a small number of KA and KB candidates are expected to pass the test. Using a combi-

nation of these candidates, the number of valid candidates for KL and KR can be reduced

dynamically. It is unlikely for wrong guesses of KA and KB to deduce KL and KR able to

pass Hamming weight checks.

7

4 Two Variants of Attack with Robustness to Mea-

surement Errors

A Hamming weight attack is normally fast and easy to implement when all required Hamming

weights are measured accurately. However, in real circumstances, imperfect measurement

cannot be always avoided. An attacker could attempt to mitigate the measurement noise

using some statistical methods (e.g., averaging) in order to keep measurement accuracy at a

satisfactory level. The attack presented in [12] is not error tolerant. As a result, a spurious

key or no key could be recognized as the correct key when measurement noise is high enough

to cause errors in the determination of Hamming weights. Two modified attacks are thus

given to tolerate errors.

4.1 Noisy Power Leakage Model

Denote h[j] as the Hamming weight quantized from the power trace at time j in this model.

Since f(·) is not always linear, the error during quantization needs to be considered. A

number of wrong captures of clock cycles may also occur. This is caused by imperfect

understanding of timing information about the implementation. Thus, the Hamming weight

processed by an unrelated instruction may be wrongly recognized. Let ∆H denote the offset

due to possible small errors from measurement and quantization. Typically, ∆H = 1. Then,

the real Hamming weight obtained from measurement equipment is modelled as

h[j] =

H[j] ± ∆H with P = Pα

rand([0, · · · , Hmax]) with P = Pβ

H[j] with P = 1−Pα−Pβ

(4)

where Pα is the probability that h[j] is wrongly quantized as its adjacent Hamming weight

and Pβ is the probability that the result is uniformly randomly taken due to wrong recognition

of clock cycles or other severe noise. When Pα = Pβ = 0, the leakage model is equivalent to

the basic model in Section 3.1 and assumed in [12].

8

4.2 Attack Variant 1 Robust Against Small Noise

The “small” noise mentioned here means that its effect is only able to cause an error no more

than ∆H on the measured Hamming weight. Such type of noise suits the power leakage model

given by (4) where Pβ = 0. To tolerate these small errors, the only modification in the attack

is to change the method of Hamming weight checks. Instead of considering whether the two

Hamming weights from a candidate byte partition and measurement (denoted by h
′

and h,

respectively) are the same in order to determine the viability of the candidate, a candidate

byte remains viable if |h
′

− h| ≤ ∆H.

Since the current Hamming weight comparison is looser than equality checking, a wrong

key guess is more likely to pass the test. This attack variant costs more time and memory

because a wrong key guess may need more checks to be eliminated. However, Camellia’s

KA derivation provides checks up to T17 and these can all be used to eliminate wrong keys.

The processing times used to perform the attack1 with different error rates Pα are listed in

Table 2, where ∆H = 1. Note that when Pα is high, the processing time is short. This

is because when the small measurement errors occur more frequently, it is more likely for

candidate Hamming weight h
′

passing the current Hamming weight comparison to be farther

from the Hamming weight of the actual key, thus, more likely for its associated key guess to

fail in next Hamming weight comparison.

Table 2: Processing Times of Attack Variant 1 on a PIII 933MHz Computer

Error rate Pα 1 0.8 0.6 0.4 0.2 0
Processing time 13 mins 45 mins 7.2 hours 2.2 days ≈ 7 days ≈ 70 days

4.3 Attack Variant 2 Robust Against Wide Range of Noise

Attack variant 1 overcomes the effects of small errors in Hamming weight measurement

whether frequently happening or not. However, in some systems a wide range of noise may

occur due to wrong recognition of clock cycles associated with Hamming weight measure-

1Based on randomly generated key KL = {D7, 13, E8, 80, 5F, FD, E3, 9E, 1B, C6, CF, 4D, F4, C7, 66,
EF} in hexadecimal.

9

ments or severe external interference. When a clock cycle is wrongly recognized, h may be

any integer among [0, Hmax] dependent on the data processed at that moment. The occur-

rence of this type of error is reflected in a nonzero value for Pβ in (4). In this circumstance,

attack variant 1 could lead to a correct byte failing a check and being eliminated and even-

tually to determination of an incorrect key. Attack variant 2, however, can be employed to

attack the key schedule when wide range of noise is unavoidable, i.e., Pα, Pβ > 0.

Instead of dynamically pruning key guesses through a local Hamming weight comparison,

a weighted comparison scheme is applied. Each Hamming weight check now returns a weight

w which measures the difference between h
′

and h:

w = W [|h
′

− h|] .

The entry value of array W [·] depends on the error distribution and drops to 0 as the index

rises (e.g., in our experiment, W [0] = 5, W [1] = 2, W [2] = · · · = W [Hmax] = 0). Let Sw

denote the sum of return values from n Hamming weight comparisons for the bytes of a

partial key candidate. When a candidate partial key is true and ∆H = 1 (see (4)), it is

expected that

Sw =
n
∑

i=1

W [h
′

i − hi] ≈ (1−Pα−Pβ) · n · W [0] + Pα · n · W [1] (5)

when W [2] = · · · = W [Hmax] = 0. Thus, the probability of the following inequality being

true is quite high

Sw ≥ η · (1−Pα−Pβ) · n · W [0] (6)

when n is large enough and 0 ≤ η ≤ 1. A smaller η makes (6) more likely to be true, but

allows more spurious partial keys to pass the test.

If all of the left half of KL is hypothesized to calculate Sw, the processing time for an

exhaustive search in 264 candidates will be formidable. Therefore, we use a nested EDST

approach illustrated in Figure 2. The left half of KL is divided into 3 parts. The weight sum

Sw is calculated for each candidate partial key. Given a specific η, the candidates will be

discarded if inequity (6) cannot be satisfied. The remaining candidates are sorted according

to Sw and only λ candidates with high Sw will be stored to form larger candidate partial keys.

10

Within affordable computation, the attack prefers a small value of η and a large value of λ

so that the true guess will not be lost due to errors. In the experiment to attack Camellia’s

key schedule with 20 randomly generated keys as samples, the EDST approach has been

run for 2, 3, and 8 byte candidate partial keys with η = 0.5, 0.7, and 0.8, respectively. The

percentages of small noise and wide ranging noise are both 10% (i.e., Pα = Pβ = 0.1). When

λ = 256, 30% of keys can be uniquely identified in a average time of 74 hours; 45% of keys

will be uniquely identified with more processing time when λ = 512.

Figure: An Error-Tolerant Nested EDST Guess of Camellia Key Based on
Hamming Weight Attack

 EDST: Evaluate weighted count of matching times;

Discard the candidates with counts < T1;
Sort the rest candidates with weighted counts;
Truncate candidates and keep first T2 for next step.

EDST EDST EDST

EDST

EDST EDST EDST

EDST

(Any right half guess assumes the left half is known)

Figure 2: A Nested EDST Approach
(E: Evaluate Sw for each candidate; D: Discard if not satisfying (6);

S: Sort remaining candidates with Sw; T: Truncate and keep first λ candidates.)

5 General Susceptibility Evaluation

The Hamming weight attack and its variants described in this paper also work for the

key schedule of some other ciphers. Two main measures are of interest for this attack:

(1) the size of targeted partial key space (denoted by Ω) that the attack begins with; (2)

the average number of Hamming weight checks per byte in the targeted partial key space,

denoted as ξ. An attacker hopes to find a scenario to reduce the candidates in Ω. A small

Ω implies a low workload for exhaustive search within Ω. A high ξ leads to a small number

of valued candidates left after attacking. Assuming the operations in the key schedule to

be independent of each other, the number of candidates left is expected to be 256(50.27
256

)ξ.

This implies that when ξ > 3.41, it is possible to reduce the number of valid partial key

candidates close to one. In a real attack, ξ has to be much larger than 3.41 because most

11

Table 3: Susceptibility Evaluation for Several Block Ciphers

Ciphers |Ω| ξ Comments

AES 240 4.4 mainly exploit ⊕
Camellia 28m+4 ≈ 6.22 exploiting rotation only
DES 28m+8 ≈ 8 exploit rotation
IDEA 28m+6 ≈ 6.5 exploit rotation
SAFER++ 28m+8 ≈ 24 exploit rotation and byte-wise addition
SHACAL-0 232 4 ⊕ without rotation

hypothesize 1 byte in each word
SHACAL-1 264 ≈ 3.5 ⊕ with rotation

hypothesize 2 bytes in each word

operations are correlated (such as the fixed rotations of Camellia). For the attack in [12],

|Ω| = 236, ξ=6.22.

Table 3 shows the susceptibility of DES, IDEA, SAFER++ [15], AES (deduced from [10]),

SHACAL-0 and SHACAL-1 [16] toward similar attacks. The values of |Ω| and ξ listed in this

table are based on our assessment of values that can lead to a real attack. It is possible that

more efficient attacking scenarios exist with more desirable |Ω| and ξ. No evident vulnera-

bility to the attack from the key schedules of MISTY1 [17], Khazad [18], SHACAL-2 [16],

and RC6 [19] are observed.

6 Countermeasures

Hamming weight attacks, like other simple power attacks, work well only on poorly im-

plemented cryptographic devices. Most countermeasures require additional operations and

diminish performance. From the viewpoint of a cipher designer, a key schedule is resistant

to a Hamming weight attack in nature if a good avalanche effect exists from the cipher key

to subkeys as well as from one subkey to another. As a result, a very large Ω (ideally the

whole key space) has to be hypothesized to get a number of ξ high enough for key identifi-

cation. From the viewpoint of a system designer, a 16- or 32-bit smart card implementation

is desirable because a larger word size decreases the number of possible Hamming weight

checks and makes measurement harder and less accurate. To provide resistance to a cipher

12

already designed on 8-bit smart cards, the following countermeasures can be selected during

implementation:

• One popular approach is to mask operations with random content. For example,

Z = X ⊕ Y can be implemented with Z = ((X ⊕∆X)⊕ Y)⊕∆X. The random data

∆X enlarges |Ω| with an expected factor of 50.27.

• Some operations in key schedules are commutative and distributive, e.g., (X⊕Y) <<<

1 = (Y <<< 1) ⊕ (X <<< 1). It is hard for attackers to recognize the proper clock

cycles from power traces if the program switches these equivalent operations randomly

or data-dependently (e.g., reverse order of ⊕ and <<< when X is odd). Thus, the

measurement Hamming weight h could be unrelated to candidate Hamming weight h
′

due to wrong clock cycle recognition, which makes Pβ larger.

• A more resistant CMOS technology proposed in [20] can be used for smart cards if

applicable. The power consumed by these types of circuits do not depend on the data

being processed.

7 Conclusions

Camellia has a key schedule with high agility. KA’s derivation brings nonlinear properties

into subkeys and gains more resistance to slide and related-key attacks. However, as shown

in [12], based on the assumption of accurate power measurements resulting in perfect Ham-

ming weight determinations, rotations used to generate subkeys provides enough information

about KL to compromise the key. Further, the fact that KL is used as the input of KA’s

derivation structure provides attackers enough information to launch a Hamming weight

attack to uniquely identify the key. The Feistel structure of KA’s derivation gives many

chances to verify the hypothesis. The two attack variants introduced in this paper exploit

this redundancy to gain robustness in the presence of errors in the Hamming weight measure-

ments. Consequently, when Camellia is implemented in the device with Hamming weight

leakage, it is very important for implementors to consider appropriate countermeasures as

13

discussed in Section 6. Moreover, we propose two measures to evaluate the susceptibility of

a block cipher against similar attacks.

References

[1] K. Aoki, T. Ichikawa, M. Kanda, M. Matsui, S. Moriai, J. Nakajima, and T. Tokita,

“Camellia: a 128-bit block cipher suitable for multiple platforms - design and analysis,”

in Proceedings of Selected Areas in Cryptography - SAC 2000, vol. 2012 of Lecture Notes

in Computer Science, pp. 39–56, Springer-Verlag, 2001.

[2] M. Kanda, “Practical security evaluation against differential and linear attacks for Feis-

tel ciphers with SPN round function,” in Proceedings of Selected Areas in Cryptography

- SAC 2000, vol. 2012 of Lecture Notes in Computer Science, pp. 324–338, Springer-

Verlag, 2001.

[3] T. Shirai, S. Kanamaru, and G. Abe, “Improved upper bounds of differential and linear

characteristic probability for Camellia,” in Proceedings of Fast Software Encryption -

FSE 2002, vol. 2365 of Lecture Notes in Computer Science, pp. 128–142, Springer-

Verlag, 2002.

[4] Y. Yeom, S. Park, and I. Kim, “On the security of CAMELLIA against the square

attack,” in Proceedings of Fast Software Encryption - FSE 2002, vol. 2365 of Lecture

Notes in Computer Science, pp. 89–99, Springer-Verlag, 2002.

[5] National Institute of Standards and Technology, “FIPS 197 Advanced Encryption

Standard (AES),” Available at csrc.nist.gov/publications/fips.

[6] New European Schemes for Signatures Integrity and Encryption (NESSIE) website.

Available at www.cosic.esat.kuleuven.ac.be/nessie.

[7] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Proceedings of Advances

in Cryptology - CRYPTO’99, vol. 1666 of Lecture Notes in Computer Science, pp. 388–

397, Springer-Verlag, 1999.

14

[8] T. S. Messerges, “Using second-order power analysis to attack DPA resistant soft-

ware,” in Proceedings of Cryptographic Hardware and Embedded Systems - CHES 2000,

vol. 1965 of Lecture Notes in Computer Science, pp. 238–251, Springer-Verlag, 2000.

[9] E. Biham and A. Shamir, “Power analysis of the key scheduling of the AES candidates,”

in Second Advanced Encryption Standard (AES) Candidate Conference, Rome, Italy,

1999.

[10] S. Mangard, “A Simple Power-Analysis (SPA) attack on implementations of the AES key

expansion,” in Proceedings of the 5th International Conference on Information Security

and Cryptology - ICISC2002, vol. 2587 of Lecture Notes in Computer Science, Springer-

Verlag, 2002.

[11] E. Oswald and B. Preneel, “A theoretical evaluation of some NESSIE candidates regard-

ing their susceptibility towards power analysis attacks,” Technical report, Katholieke

Universiteit Leuven, Dept. ESAT, October 2002.

[12] L. Xiao and H. Heys, “A simple power analysis attack against the key schedule of the

Camellia block cipher,” in Information Processing Letters, vol. 95, pp. 409–412, Elsevier,

2005.

[13] T. Messerges, E. Dabbish, and R. Sloan, “Examining smart-card security under the

threat of power analysis attacks,” in IEEE on Transactions on Computers, vol. 51,

pp. 541–552, April 2002.

[14] NESSIE Archive, “The IDEA block cipher,” 2000. Available at www.cosic.esat.

kuleuven.ac.be/nessie.

[15] NESSIE Archive, “SAFER++ submission,” 2000. Available at www.cosic.esat.

kuleuven.ac.be/nessie.

[16] H. Handschuh and D. Naccache, “SHACAL,” 2000. Available at www.cosic.esat.

kuleuven.ac.be/nessie.

15

[17] M. Matsui, “New block encryption algorithm MISTY,” in Proceedings of Fast Soft-

ware Encryption - FSE’97, vol. 1267 of Lecture Notes in Computer Science, pp. 54–68,

Springer-Verlag, 1997.

[18] P. Barreto and V. Rijmen, “The Khazad legacy-level block cipher,” in First Open

NESSIE Workshop, Leuven, November 2000. Available at www.cosic.esat.kuleuven.

ac.be/nessie.

[19] R. L. Rivest, M. J. B. Robshaw, R. Sidney, and Y. L. Yin, “The RC6 block cipher,”

August 2002. Available at www.rsasecurity.com/rsalabs/rc6.

[20] K. Tiri, M. Akmal, and I. Verbauwhede, “A dynamic and differential CMOS logic with

signal independent power consumption to withstand differential power analysis on smart

cards,” in Proceedings of the 28th European Solid-State Circuits Conference, Florence,

Italy, September 2002.

16

