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Abstract 

 
In this paper, we propose a practical algorithm that can be used to analyze the block cipher structure known 
as a Substitution Permutation Network (SPN) with respect to linear and differential cryptanalysis. The 
algorithm has been applied to 16-bit ciphers and some realistic 64-bit ciphers based on 8 8×  and 4 4× S-
boxes that possess good cryptographic properties. Experimental data is presented in the paper which 
demonstrates the usefulness of the algorithm in characterizing the security level of realistic SPN block 
ciphers. 
 
I    Introduction 
 

In this paper, we study an algorithm used to analyze the application of linear and differential 
cryptanalysis to Substitution and Permutation Networks (SPNs). In many real world applications the 
attacker of an encryption system can possess a set of plaintexts and ciphertexts. Linear cryptanalysis [1] 
provides a mechanism to obtain subkey bits from the knowledge of plaintext and ciphertext bits. It is called 
a known plaintext attack because the attacker has the knowledge of the set of plaintexts and the 
corresponding ciphertexts [2].The basic principle of the linear cryptanalysis is to statistically analyze the S-
boxes and extend the properties of the S-boxes to the entire cipher structure [3]. 

Unlike linear cryptanalysis, differential cryptanalysis is a chosen plaintext attack [3] [4]. In this 
approach the attacker chooses plaintext input and tries to inspect the output in order to obtain the subkey 
bits. In differential cryptanalysis the attacker tries to make use of the highly probable differences into the 
last round of the cipher corresponding to certain plaintext differences [4]. 

In [5], Matsui developed an algorithm to find the best linear approximation probability and 
differential probability for the Data Encryption Standard (DES).  In this paper, building on Matsui’s 
algorithm, we propose a practical algorithm that can be used to analyze the block cipher structure known as 
a Substitution Permutation Network (SPN) with respect to linear and differential cryptanalysis.   

The remaining four sections in the paper are organized as follow: In Section II, an original 
algorithm developed related to the SPN structure is introduced. The algorithm tries to find the optimal 
linear approximation and differential characteristic related to SPNs. The algorithm provides a tool to 
analyze the effectiveness of the attacks against SPNs and improve the design and selection of cipher 
components.  In Section III, the pseudo code of the two-round iterative algorithm is presented. In Section 
IV, the algorithm result for linear cryptanalysis is shown for a simple 16-bit SPN [3] [6] and in Section V, 
conclusions are drawn relevant to our work. 
 
II    Two-Round Iterative Algorithm. 
 

In this section, we examine a practical two-round iterative algorithm that is used to analyze an 
SPNs resistance to linear and differential cryptanalysis. However, due to space limitations we do not review 
the application of linear and differential cryptanalysis to SPNs. The reader is referred to [3]. Before 
implementing the two-round iterative algorithm we tried a modified version of Matsui’s algorithm [5] 
applied to SPNs. The algorithm proved to be inefficient for SPNs such that a solution for realistically-sized 
networks of 64-bits and 8 or more rounds could not be found. 

In the two-round iterative algorithm, the search for the linear approximation or differential 
characteristic with the largest bias or probability for the cipher structure is depth first search (DFS) based. 



The nature of the use of DFS is to find optimal branches through all layers of the tree such that some 
branches and nodes do not need to be visited as they are clearly not optimal. This we call pruning. Hence 
pruning tries to reduce search space within the tree structure. When the algorithm is executed an implicit 
tree structure is formed. Each node in the tree structure is equivalent to iXΓ  for linear cryptanalysis and 

iX∆  for differential cryptanalysis, where i is the round number of the SPN and XΓ  represents the linear 
mask and X∆  represents the difference of the input to a round [5]. Each layer in the tree structure 
symbolizes the corresponding round number for the SPN. The purpose of a DFS algorithm is to search for 
the branches through each layer of the tree structure to find where the optimal solution resides. In the case 
of linear cryptanalysis, an optimal solution is an approximation with the maximum bias. For differential 
cryptanalysis an optimal solution is a characteristic with the maximum probability.  

The two key aspects that are incorporated into the algorithm are the greedy approach and the 
intelligent pruning mechanism.  The greedy approach in the context of algorithm determines the order of 
the branches to be searched while the intelligent pruning mechanism determines when branches are too bad 
to be considered for further search in the algorithm based on a conditional check. In order to reduce the 
number of search operations and avoid unnecessary traversing of nodes and branches within the tree 
structure, the greedy approach in combination with the intelligent pruning mechanism is used to find the 
best bias or differential probability of the network as quickly as possible.  

The greedy approach applied to our algorithm basically considers the arrangement of these 
masking/difference output bits from the S-box with respect to the masking/difference input bits, and the 
active S-box involved during such transformation. If the masked/difference output bits lead to the right 
solution quickly, then the solution is achieved with lesser number of search operations. Thus in our 
algorithm we try to find the appropriate ( , )i iX YΓ Γ  value from the bias-table or ( , )i iX Y∆ ∆ value from the 
difference-table  for each round i using a greedy approach, so that the resulting solution of n rounds is the 
best one. The greedy approach is useful because it helps to find the maximum bias by minimizing active S-
boxes (based on the hamming weight of YΓ or Y∆ ) and maximizing S-box bias value [3].  

The intuition behind the approach is to collect a list of close-to-optimal results after every two 
rounds (i.e., the list of results obtained after round 2, are used to calculate good results after round 4). The 
process is iteratively repeated after every two rounds until the good result is obtained after n rounds. The 
assumption in the approach is that by basing the result for n, on good results for n-2, the overall result will 
be good, if not optimal. The results obtained using this approach has been found to give good biases or 
probabilities for an n round approximation or differential. 

 
 III     Pseudo code for Two-Round Iterative Algorithm 
 

 The pseudo code in Figure 1 and the notation used in the two round iterative algorithm are shown 
with respect linear cryptanalysis. Similar concepts can be applied to differential cryptanalysis. The 
algorithm produces as output nB , the estimate of the best n-round bias, and the arrays C and D that contain 
a list of good n-round biases and their corresponding XΓ , YΓ  values for each round.  The notations used 
explicitly for the pseudo code shown in Figure 1 are discussed below: 
 

• Variable n is the number of rounds in the linear approximation of the cipher structure. 
• ( , )i i ip X Y= Γ Γ  is the bias of the thi  round  computed using the piling-up lemma [3] [5] . It is 

based on biases from the active S-boxes. 
• 1 2 3[ , , ,.... ]np p p p  is the n-round bias computed  using the piling-up lemma [3] [5] .  

• ( )perm  represents the permutation of bits as determined by the SPN structure for the given input 
vector. 

• max ( , )n Y np X YΓ= Γ Γ  is the maximum bias over all possible value of  YΓ  for the given nXΓ  
value. 

• Term nB  is the current estimate of the maximum n-round bias of the cipher. 
 



 
Two-Round Iterative Algorithm: 
 
BEGIN 

  i=0, nB =0 

 FOR 1 k n≤ ≤  DO 
     FOR 1 j L≤ ≤  DO 

         [ ]kC j = 0 

     END FOR  
 END FOR      
 WHILE i < n                                                
     IF ( 0)i ==  THEN call Procedure FirstRound () 

     IF ( 2)i n+ >  THEN call Procedure Round (n) 

     IF ( 2)i n+ ==  THEN call Procedure Round-even (n-1) 
     ELSE   call Procedure Round (i+1) 
     2i i= +  
 END WHILE 
EXIT  
 
Procedure FirstRound () 
 
 FOR each candidate for  1YΓ  DO 

     1 1max ( , )Xp X YΓ= Γ Γ  

     1 1 1 |  ( , )X X p X YΓ = Γ = Γ Γ  

     IF 1 1[ , ]n np Z B− ≥  THEN 

         2 1( )X perm YΓ = Γ
    

         FOR each candidate for 2YΓ  DO 

             2 2 2( , )p X Y= Γ Γ  

             IF 1 2[ , ]p p ≥  smallest bias in 2C   THEN 

                 INSERT 1 2[ , ]p p  in 2C  

                 INSERT 1XΓ  in  1 'D , 1YΓ  in  1 "D   

                 INSERT 2XΓ  in 2 'D , 2YΓ  in 2 "D   
             END IF 
         END FOR 
     END IF 
 END FOR 
RETURN 
 
Procedure Round (i) 
 
 FOR 1 j L≤ ≤  DO 

     1[ ]iC jδ −= ,  1( "[ ])i iX perm D j−Γ =  

     FOR each candidate for  iYΓ  DO 

         ( , )i i ip X Y= Γ Γ  

         IF [ , , ]i n i np Z Bδ − ≥  THEN 

             1 ( )i iX perm Y+Γ = Γ
    

             FOR each candidate for 1iY +Γ  DO 

                 1 1 1( , )i i ip X Y+ + += Γ Γ  

                 IF 1[ , , ]i ip pδ + ≥  smallest bias in 1iC +   THEN 

                     INSERT 1[ , , ]i ip pδ +  in 1iC +  

                     INSERT iXΓ  in  'iD , iYΓ  in  "iD  

                     INSERT 1iX +Γ  in 1 'iD + , 1iY +Γ  in 1"iD +  

                 END IF 
             END FOR 
         END IF 
     END FOR 
 END FOR 
RETURN 
 

 



Procedure Round (n) 
 
 FOR 1 j L≤ ≤  DO 

     1[ ]nC jδ −= ,  1( "[ ])n nX perm D j−Γ =  

   
  

max ( , )n Y np X YΓ= Γ Γ  

      |  ( , )n n nY Y p X YΓ = Γ = Γ Γ  

     IF [ , ]n np Bδ ≥  THEN [ , ]n nB pδ=  

     IF [ , ]npδ ≥  smallest bias in nC   THEN 

         INSERT [ , ]npδ  in nC  

         INSERT nXΓ  in  'nD , nYΓ  in  "nD  

     END IF 
 END FOR 
RETURN  
 
Procedure Round-even (i) 
 
 FOR 1 j L≤ ≤  DO 

     1[ ]iC jδ −= ,  1"[ ]i iX D j−Γ =  

     FOR each candidate for iYΓ  DO 

         ( , )i i ip X Y= Γ Γ  

         IF 1[ , , ]i np Z Bδ ≥  THEN 

             1 ( )i iX perm Y+Γ = Γ  

             1 1max ( , )i Y ip X Y+ Γ += Γ Γ  

             1 1 1 |  ( , )i i iY Y p X Y+ + +Γ = Γ = Γ Γ
         

 

             IF 1[ , , ]i i np p Bδ + ≥  THEN 1[ , , ]n i iB p pδ +=  

             IF 1[ , , ]i ip pδ + ≥  smallest bias in nC   THEN 

                 INSERT 1[ , , ]i ip pδ +  in nC  

                 INSERT iXΓ  in  1 'nD − , iYΓ  in  1"nD −  

                 INSERT 1iX +Γ  in 'nD , 1iY +Γ  in "nD  
             END IF 
        END IF 
     END FOR 
 END FOR 
RETURN  

 
 
                         Figure 1: Pseudo code for two-round iterative algorithm for linear cryptanalysis 

 
• n iZ −  is equal to 2 |{max( , ) / 2 }|n i mX Y− × Γ Γ  , where max( , )X YΓ Γ  is the maximum value in the 

bias-table and m is the number of output bits of the S-box. 
• 1iC +  is a sorted array of size L. The value of L should be large enough to collect good bias for i+1 

rounds and is ideally large enough to include the partial optimal solution. 1iC +  is always sorted in 
ascending order. If the array is full and the new value is larger than smallest value in array, then 
the new value is inserted into the appropriate position within the array.  

• 1 'iD +  is an array of size L. The array collects the masking input values for active S-boxes of round 
i+1 corresponding to probabilities in array 1iC + . 

• 'iD  is an array of size L. It collects the masking input values for active S-boxes of round i. These 
values help in backtracking the masking inputs and the active S-boxes when the n-round 
probability is found and the corresponding linear approximation is to be determined. 

• "iD  and 1"iD +  represents output masking value corresponding to 'iD  and 1 'iD +  respectively. 
• INSERT operation inserts the value, if appropriate, into the appropriate position in the array. 



 
Note that the candidates for iYΓ and 1iY +Γ  are restricted to scenarios where there are 3 or fewer 

active S-boxes. Experiment results suggest that the optimal solution satisfies this constraint. This restriction 
is important or the search space in the DFS approach becomes too large for the search to be practical. 
 
IV    Algorithm Results  
                                                                                                                            Table 1 

A sample result for the algorithm is shown in Table 1 of a 9 round linear 
approximation of the 16-bit SPN using 4 4×  S-boxes [3]. The S-box used in the 
simulation is the DES S-box used in [3]. All the values in Table 1 are in hexadecimal 
format. In Table 1, each cell corresponds to an S-box. All the non-zero cells depict the 
active S-boxes in the cipher structure. The value in each cell represents the input to the 
corresponding S-box. For example, the number 6 present in first row and third column, 
represents the input value 6 in hexadecimal for the third S-box in round one. The largest 
bias value 9B  found by the algorithm is 1.466e-4. Therefore according to [1], about 
4.65e+7 known plaintext /ciphertext pairs are required to attack the cipher structure using 
linear cryptanalysis. Table 1 is useful in viewing the active S-boxes and the actual input 
to the S-boxes that could be used to formulate an attack. For example, only 16 S-boxes 
form the linear approximation out of maximum 36 S-boxes.  Likewise, a table can be 
formulated by running the algorithm for differential cryptanalysis. In the case of 
differential cryptanalysis 9B  will represent the differential probability of 9 rounds of 
cipher. Similarly, the algorithm can be applied to 64-bit SPN ciphers.  
  
V    Conclusion 
 

The two-round iterative algorithm is a practical algorithm that can be applied to 
realistic 64-bit SPN structures. By using this algorithm, good solutions which represent linear 
approximations with the large biases or differential characteristics with the large probabilities are achieved 
in practical time. Although there is no way mathematically or practically to guarantee that the result 
attained is the optimal using this algorithm, the algorithm is a useful tool to look into properties of S-boxes 
and cipher structures that are necessary for good cryptographic resistance to linear and differential 
cryptanalysis. Some future work can be the application of the algorithm to other cipher structures and 128-
bit SPN structures.  
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