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Abstract—Pipelined S-boxes are usually used in high speed 
hardware implementations of the Advanced Encryption 
Standard (AES), and not typically found in compact 
implementations because of the extra complexity added by the 
pipeline registers. In this paper, the area and speed performance 
of applying a pipelined S-box to compact AES hardware 
implementations is examined. A new compact AES encryption 
hardware core with 128-bit keys is proposed. The proposed 
design employs a single 4-stage pipelined S-box that is shared by 
the data path operation and the key expansion operation. 
Compared with the previous smallest encryption-only ASIC 
implementation of AES, it achieves an increase in throughput of 
2.12 times while maintaining a similar gate count. This result 
indicates that it is reasonable to consider using pipelined S-boxes 
in AES hardware implementations targeted at applications 
requiring low area and moderate speed. 

I. INTRODUCTION 

AES is a block cipher algorithm standardized by the US 
government [1], and it is regarded as the most reliable block 
cipher currently because there are no serious security flaws 
reported since it was released in 1999. Due to the wide 
recognition and adoption of AES, there has been a lot of 
interest in developing a compact AES hardware 
implementation for low cost security applications. Generally, 
a compact implementation refers to the low gate count of the 
implementation, and low gate count would result in low 
manufacture cost and contribute to low power consumption.  

There have been many research works dedicated to the 
design of compact AES implementation. Typical works based 
on ASIC technology include [2], [3], [4], [5] and [6]. 
According to the comparison in [2], the design proposed in [2] 
achieves the smallest gate count while having a significant 
improvement on the throughput compared with [3], [4] and [5].  
The work presented in [6] is a recent proposal for compact 
AES implementation with the focus on low power 
consumption, and it has poorer area and speed performance 
than the design in [2]. The design of [2] is an AES encryption 
core with an 8-bit data path where two S-boxes are 
implemented, one used by round operations and the other used 

by the key expansion. Even though the throughput of this 
design is higher than other compact designs, the critical path, 
which determines the maximum clock frequency and 
consequently the throughput, is quite long because it 
comprises the entire critical path of the S-boxes. S-boxes are 
the most complex component in an AES implementation and 
it generally involves a large number of gates on its critical 
path. Commonly in an AES implementation for high speed 
applications, the S-boxes are pipelined to several stages in 
order to reduce the critical path of the overall design. However 
this method is seldom applied to compact implementations for 
throughput improvement because it is assumed that pipeline 
registers would incur large hardware overhead, which is not 
affordable for the compact implementations targeted at low 
cost applications. In this paper, the applicability of using a 
pipelined S-box in compact AES hardware implementations is 
examined. A new VLSI architecture design for AES 
implementation is proposed to accommodate a 4-stage 
pipelined S-box and the implementation results show that the 
new design can achieve more than double the throughput of [2] 
while keeping the same gate count. The performance of using 
an S-box with other number of pipelined stages is also 
investigated and the results are compared and discussed. In the 
following, the design from [2] is referred to as the reference 
design. 

II. AES OVERVIEW 

AES is a block cipher algorithm with a block size of 128 

 

Figure 1.  Block diagram of the proposed AES encryption core architecture 
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Figure 2.  Architecture of the AES encryption core with a 4-stage pipelined S-box 

bits. The key size of AES can be independently specified to 
128, 192 or 256 bits, and accordingly there are 10, 12 or 14 
iteration rounds to be performed for the encryption or 
decryption of a block. Each iteration round consists of 
SubByte, ShiftRow, MixColumn and AddRoundKey operations 
except the final round where the MixColumn operation is 
skipped. The intermediate results produced by these 
operations are denoted as State. The SubByte operation 
performs the non-linear transformation of each byte in the 
State according to the S-box mapping of AES. The ShiftRow 
operation cyclically shifts left the bytes in the rows of the 
State with offsets from 0 to 3 bytes. In the MixColumn 
operation, the columns of the State are considered as 
polynomials with coefficients in GF(28) and multiplied 
modulo m(x) = x4+1 with a fixed polynomial c(x) = 03x3+ 
01x2+01x+02. The AddRoundKey operation performs the 
bitwise exclusive-or (XOR) of the State and the round keys. 
The round keys are produced by the key expansion operation 
that involves substitution, word rotation, and XOR operations. 
Refer to [1] for a detailed description of the AES algorithm. 

III. ARCHITECTURE DESIGN 

The block diagram of the proposed architecture design is 
shown in Fig 1. In the architecture, the round operations have 
an 8-bit data path, and on the path, the ShiftRow, SubByte, 
MixColumn and AddRoundKey operations are performed byte 
by byte in sequence by the corresponding components. To 
complete the operation of one round of AES encryption, all 
the bytes of the State need to traverse the round operation data 
path once, so totally 10 traversals are required to encrypt an 
128-bit plaintext after the data path loads it. The key 
expansion component also has an 8-bit data path and generates 
round keys on-the-fly using 128-bit keys. One S-box is used 
alternately by round operations and the key expansion. During 
the period the S-box is occupied by the key expansion 
component, the round operations are frozen by clock gating. 
The proposed architecture adopts the same ShiftRow, 

MixColumn and S-box structures as the reference design. The 
interconnection between components is modified and the key 
expansion component is newly designed in order to fit the 
interleaving use of the S-box and the influence of clock gating. 
The detailed architecture of the proposed design is shown in 
Fig. 2. All the paths in Fig. 2 have a width of 8 bits, and the 
blocks marked with “R” are 8-bit registers. The operation of 
each component and their interaction will be described in the 
following separately. 

A. ShiftRow Component 

The ShiftRow component consists of 12 8-bit registers 
connected in series and there are shortcuts from the input to 
the output and every fourth register. The component takes 
bytes arriving in the order of State columns and reorders the 
bytes while they are passing through. The detailed operation 
of the component is described in [2]. 

B. S-Box 

The S-box adopted in the proposed design is developed in 
[7], and is considered to be the most compact AES S-box 
hardware structure [8]. Since the computation of 
multiplicative inverse over GF(28) can be converted to the 
computations in subfields, in [7] the S-box structure is 
examined for a number of representations of subfields, 
including both polynomial bases and normal bases, and the 
one leading to the implementation with the smallest gate count 
is identified. In the proposed architecture, the S-box is 
pipelined to 4 stages, and the places to insert pipeline registers 
are carefully studied and selected at the gate level so that the 
critical path of the circuit is minimized by balancing the 
delays of each stage while the number of required pipelined 
registers is minimized. The pipeline registers are placed 
between two consecutive stages but not shown in Fig. 2. 

C. MixColumn Component 

The MixColumn component is a serial-in, parallel-out



Table 1.  REGISTER STATES OF THE ROUND OPERATION DATA PATH 

Cycle R1 R2 R3 …… R8 R9 R10 R11 R12 R13 R14 R15 R16 

2 X X X X X X X X X X 01 

15 X 01 02 …… 07 08 09 010 011 X 012 013 014 
*16-20 01 02 03 …… 08 09 010 011 012 X 013 014 015 

27 08 09 010 …… 015 016 X X X 11 X X X 
28 09 010 011 …… 016 X X X 11 X 12 13 14 

*39-43 11 12 13 …… 18 19 110 111 112 113 X X X 
*223-227 91 92 93 …… 98 99 910 911 912 813 X X X 

230 94 95 96 …… 911 912 913 914 915 X 816 X X 

231 95 96 97 …… 912 913 914 915 916 101 X X X 

232 96 97 98 …… 913 914 915 916 X 102 X X X 

244 X X X X X X X 1014 X X 01 

246 X X X X X X X 1016 01 02 03 

 

Table 2.  REGISTER STATES OF THE KEY EXPANSION COMPONENT  

Cycle R17 R18 …… R24 R25 R26 R27 R28 R29 R30 R31 R32 

1 X X X X X X X X X 01 

17 02 03 …… 09 010 011 012 013 014 015 016 01 
20 05 06 …… 012 013 014 015 016 11 02 03 04 

*21 05 06 …… 012 014 015 016 013 11 03 04 12 
*23 05 06 …… 012 016 013 014 015 11 12 13 14 

*24-27 05 06 …… 012 013 014 015 016 11 12 13 14 
28 06 07…… 013 014 015 016 11 12 13 14 05 
30 08 09…… 015 016 11 12 13 14 05 06 07 
39 11 12…… 18 19 110 111 112 113 014 015 016 
43 15 16 …… 112 113 114 115 116 21 12 13 14 

227 95 96 …… 912 913 914 915 916 101 92 93 94 

*231 95 96 …… 912 913 914 915 916 101 102 103 104 

232 96 97 …… 913 914 915 916 101 102 103 104 95 

234 98 99 …… 915 916 101 102 103 104 105 96 97 

246 104 105 …… 1011 1012 1013 1014 1015 1016 01 02 03 

 

matrix multiplier. It takes one byte input per clock cycle 
continuously for 4 cycles to receive a column of the State. At 
every fourth clock cycle, the computation of the MixColumn 
operation on the current column of the State is completed and 
the first byte of the result is output while the remaining three 
bytes are fed to the input of the parallel-in, serial-out shift 
registers incorporated in the MixColumn component. 
Subsequently, the three bytes are shifted out in the following 
three cycles. The blocks “X02” and “X03” in Fig. 2 generate 
the products of the current input byte and 02H and 03H, 
accordingly. The AND gates are used to bypass the XOR 
gates. This is done by setting EN to 0 and thus ensuring that 
the XOR operation does not change the data. During the 
loading of a 128-bit plaintext, only the shift registers at the 
right side of the component are working to shift in and shift 
out the plaintext bytes in serial. Refer to [2] for a detailed 
explanation of the component. 

D. Key Expansion Component 

The key expansion component has an 8-bit data path, 
which is implemented mainly by circularly connected shift 
registers R17 to R32. The bytes of a round key are generated 
while the key state circulates through the shift registers and 
the generation of a round key is completed every time all of 
the key state has circulated along the path once. The 
computation of the next round key involves the substitution of 
the last four bytes of the current round key. This is realized by 

an 8-bit multiplexer switching the input of the S-box between 
the round operation data path and the key expansion data path. 
During the load period of key bits, the AND gate has EN set to 
0 to bypass the XOR gate on the shift register path.  

E. Overall Design 

       In order to clarify the operation of the architecture, the 
states of the numbered registers in Fig. 2 in certain selected 
clock cycles are shown in Tab. 1 and Tab. 2, dedicated to the 
round operation component and the key expansion component, 
respectively. For both tables, the output of the register during 
a clock period is regarded as the state of the register. In Tab. 1, 
for each state Nm (0≤N≤10, 1≤m≤16), N represents the N-th 
round within which the byte of the State is processed (with the 
exception that N=0 indicates the State prior to the first round) 
and m represents the m-th byte of the State in the order of 
columns. Similarly, in Tab. 2 the state of a register Nm 
indicates the m-th byte of the N-th round key with the original 
key bits represented with N=0. The operation of the 
multiplexers and the AND gates can be easily determined 
from Tab. 1 and Tab. 2. Clock gating is applied regularly to 
both round operation and key expansion components. The 
selected cycles that demonstrate the happening of clock gating 
are marked with “*” in Tab. 1 and Tab. 2. The registers that 
require clock gating and the cycles when clock gating is active 
can be deduced from Tab. 1 and Tab. 2. It should be 
mentioned that, as is shown in Tab. 1 and Tab. 2, the 



Table 3.  IMPLEMENTATION RESULTS  

Implementation 
Area 

(gates) 
Max. Freq.  

(MHz) 
Clocks 

per block 
Throughput

(Mbps) 
Proposed 2749 233 243 117.6 

Reference design [2] 2815 69 160 55.6 

 

Table 4.  NORMALIZED PERFORMACE COMPARISON OF THE ARCHITECTURE 
USING A SINGLE S-BOX WITH DIFFERENT NUMBER OF STAGES 

# Pipeline Stages 1 2 3 4 5 

Area 0.93 0.96 0.99 1 1.05

Throughput 0.37 0.65 0.82 1 1.15

Ratio (Throughput/Area) 0.40 0.65 0.83 1 1.1 

 

architecture works in a way for the final round operations 
slightly different from that for other rounds because the 
MixColumn operation is skipped in the final round. It takes 
246 clock cycles to complete the encryption of a 128-bit 
plaintext including loading and unloading, and since there is 
overlapping of three clock cycles during loading and 
unloading, the effective clock count of the architecture is 243 
for the encryption of a block. 

IV. IMLEMENATION RESULTS, COMPARISON AND 

DISCUSSION 

The proposed AES architecture design with a 4-stage 
pipelined S-box is synthesized using Synopsys Design 
Compiler version X-2005.09 under 0.18-μm CMOS standard 
cell technology from TSMC through CMC Microsystems [9]. 
The synthesis results of the proposed design with the 
constraint of minimum area are reported in Tab. 3. In order to 
have fair comparison, the synthesis results of the reference 
design shown in Tab. 3 is achieved by implementing and 
synthesizing the data path and key expansion part with the 
same tool, technology and constraint as the proposed design. It 
can be seen that the design with the pipelined S-box uses 
slightly fewer gates than the reference design and achieves an 
increase in throughput by a factor of 2.12. Although the 
overhead of control logic is not included in the comparison, 
the slight increase in gates used for the controller of the 
proposed design would be cancelled out by the slight decrease 
in gates on the data path. The implementation results and 
comparison show that, even though the pipelined S-box would 
introduce the latency of several clock cycles per round 
operation compared with the reference design, the reduction of 
the critical path delay by using the pipelined S-box 
compensates for the increased latency and brings significant 
boost to the throughput. Therefore, when throughput is a 
concern for a low gate count AES hardware implementation, 
the proposed design with a pipelined S-box is a much better 
choice than the reference design in [2] with two S-boxes. Only 
the performance comparison with the reference design of [2] 
is presented here because the reference design uses the lowest 
hardware cost among published works based on an ASIC 
platform.  

In order to determine the influence of the number of 
pipeline stages on the overall performance of a compact 

design, the scenarios for varying number of pipeline stages are 
investigated. The area and throughput performance of the 
architecture using a single S-box with a variety of pipeline 
stages is normalized to the 4-stage pipeline scenario and 
shown in Tab. 4. It should be noted that the architecture in Fig. 
2 only works with a 4-stage pipelined S-box and for other 
stage numbers up to 5 the architecture requires minor changes 
to fit. The architecture will not fit an S-box with more than 5 
stages of pipeline without a major modification. The 
differences in area between pipeline stage numbers come from 
the different amount of pipeline registers required in each case. 
The data under one pipeline stage in Tab. 4 indicates the 
scenario of using an un-pipelined S-box. From Tab. 4, it can 
be seen that the ratio of throughput/area is gradually improved 
as the number of the pipeline stages increases. The 
architecture with a 4-stage pipelined S-box is selected to be 
specified in this paper because it has the best performance for 
an architecture with an area smaller than the reference design 
of [2]. 

V. CONCLUSION 

In this paper, a new architecture design for compact 
hardware implementation of an AES encryption core is 
presented. The new design is featured with a 4-stage pipelined 
S-box. The implementation results show that, compared with 
the previous smallest encryption-only AES hardware 
implementation, the new design uses the same amount of gates 
to achieve an increase of 2.12 times in throughput. The 
implementation results indicate that pipelined S-boxes are 
applicable to compact implementations of AES for the 
purpose of speed improvement.  
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