
Integral Cryptanalysis of the BSPN Block Cipher

Howard Heys
Department of Electrical and Computer Engineering

Memorial University
hheys@mun.ca

Abstract— In this paper, we investigate the application of inte-
gral cryptanalysis to the Byte-oriented Substitution Permutation
Network (BSPN) block cipher. The BSPN block cipher has been
shown to be an efficient block cipher structure, particularly
for environments using 8-bit microcontrollers. In our analysis,
we are able to show that integral cryptanalysis has limited
success when applied to BSPN. A first order attack, based on
a deterministic integral, is only applicable to structures with 3
or fewer rounds, while higher order attacks and attacks using
a probabilistic integral were found to be only applicable to
structures with 4 or less rounds. Since a typical BSPN block
cipher is recommended to have 8 or more rounds, it is expected
that the BSPN structure is resistant to integral cryptanalysis.

Index Terms— cryptography, block ciphers, cryptanalysis

I. INTRODUCTION

The Byte-oriented Substitution Permutation Network
(BSPN) structure for use in block cipher design was first
proposed in [1]1. BSPN is not a specific cipher proposal with
defined components, but rather a structure for block cipher
architectures belonging to the class referred to as Substitu-
tion Permutation Networks (SPNs). The BSPN block cipher
structure has been analyzed and proposed for applications
using 8-bit microcontrollers. In [1], it is shown that a 64-
bit BSPN can be resistant to differential cryptanalysis [2]
and linear cryptanalysis [3] for 8 rounds of operations with
a suitable selection for the S-boxes. In [4], a 64-bit BSPN
cipher is analyzed for use in sensor nodes of wireless sensor
networks and is shown to be more energy efficient than
implementations of the Advanced Encryption Standard (AES)
[5]. The efficiency of BSPN is also discussed in Section II.

In general, SPNs are constructed with the datapath con-
sisting of rounds of key mixing, nonlinear byte substitution
(using an S-box), and a linear transformation2. The principles
of SPN architectures are rooted in Shannon’s concept of a
product cipher, constructed to ensure confusion and diffusion
[6]. SPNs can be efficiently implemented in both hardware
and software and can be constructed to be secure.

Figure 1 illustrates the BSPN architecture. As proposed in
[1], BSPN is defined as an involution cipher. This property
allows the use of the same components for both encryption

1Although the BSPN structure was proposed in [1], the first use of the
label “BSPN” appears in [4].

2Here, we use the term SPN to apply to ciphers with a general linear
transformation for the “Permutation” layer, although, strictly, the first SPN’s
proposed a permutation of bit ordering as the linear transformation. Our
broad definition of an SPN allows AES to also be included in the class of
SPNs.

and decryption, thereby facilitating efficient implementations
based on the re-use of components or memory when both
encryption and decryption operations are required. In order
to achieve involution, the use of involutory S-boxes and a
linear transformation that is an involution are required. For
BSPN, as defined in [1], no particular S-box is specified.
However, the S-box is assumed to be 8× 8 (where one input
byte is replaced with an output byte) and must satisfy specific
properties, such as involution, small linear bias, and small
maximum differential.

The BSPN is most notably characterized by its linear
transformation, for which a specific function is defined. Let
the block size of the cipher be N bytes or 8N bits with Ui =
[Ui1, Ui2, ..., Ui8] and Vj = [Vj1, Vj2, ..., Vj8] representing the
i-th input and j-th output bytes of the linear transformation,
respectively, where Uil ∈ {0, 1}, Vjl ∈ {0, 1}, 1 ≤ l ≤ 8,
and 1 ≤ i, j ≤ N . The linear transformation is defined as the
summation of N − 1 bytes as in:

Vj =

N⊕
i=1,i6=j

Ui (1)

where the summation of two bytes, X = [X1, X2, ..., X8],
Xi ∈ {0, 1}, and Y = [Y1, Y2, ..., Y8], Yi ∈ {0, 1}, is defined
as the bitwise XOR of the bytes, that is, X ⊕ Y = [X1 ⊕
Y1, X2 ⊕ Y2, ..., X8 ⊕ Y8].

The key scheduling process is not defined for BSPN,
but in [1] a process to generate the round keys using the
full un-keyed cipher is suggested. A round key of a size
equal to the block size is mixed into the cipher data by
using a bitwise XOR. Note that the last round of an R
round cipher differs from the first R − 1 rounds in that the
linear transformation is replaced by a last layer of round key
mixing, resulting in the requirement of R + 1 round keys.
This is typical in SPN structures and is required in order
to ensure that the decryption process (which is equivalent to
travelling backwards through Figure 1) is similar in structure
to encryption.

Although the BSPN structure does seem resistant to clas-
sical block cipher attacks such as differential and linear
cryptanalysis, the applicability of integral cryptanalysis [7]
has not been considered for the BSPN structure. However,
it is expected that modern block cipher proposals consider
resistance to the integral attack, particularly when the struc-
ture might lead to susceptibility. Hence, in order to confirm
BSPN’s resistance to integral attacks, in this paper, we explore



!
!

!
!
!

! !
!

!
!
!

!
!

!

!
!
!
!
!
!

!

...!

Linear!Transformation!

Round!Key!Mixing!

!! ! !! ! ! !Round!1!

Linear!Transformation!

Round!Key!Mixing!

!! ! !! ! ! !Round!2!

Round!Key!Mixing!

Round!Key!Mixing!

!! ! !! ! ! !Round!R"

Plaintext!

Ciphertext!

!

Substitution!!

Substitution!

Substitution!

Fig. 1. BSPN Structure

the application of integral cryptanalysis and determine the
resulting strength of BSPN in relation to the attack.

II. EFFICIENCY OF BSPN IMPLEMENTATIONS

Before we consider the application of integral cryptanalysis
to the BSPN cipher structure, we first discuss the value of the
cipher in relation to the efficiency of its underlying operations.
Although the 64-bit version of the cipher is shown in [4]
to be efficient in the context of an 8-bit microcontroller
implementation targeted to wireless sensor network nodes,
this comparison is made relative to AES which has a 128-bit
block. Although it can be expected that in many embedded
applications, a 64-bit block is sufficient, even preferred for
efficiency, it would be interesting to consider the comparison
of a BSPN cipher similarly sized to AES. Hence, consider
a BSPN based on (1) with N = 16. In this case, as with
AES, the S-box layer of BSPN requires 16 memory lookups
to achieve the necessary nonlinear substitutions for an 8-bit
microcontroller implementation. In both ciphers, key mixing
consists of XORing a block of round key bits with cipher
data. The appreciable difference then between the ciphers is
the composition of the linear transformation.

Consider first the encryption process. For AES, the linear
transformation consists of the ShiftRows and MixColumns
operations, with the MixColumns operation requiring signifi-
cant computation. It is well known that 8-bit microcontroller
implementations, in executing MixColumns, can make use of
the xtime operation [5], which performs multiplication by 2
in the GF(28) field selected for AES. The xtime operation
does this using a shift by 1 bit, followed by a conditional
XOR of the data byte with a fixed byte defined by the field.

In an implementation of AES, 24 XORs of bytes and 4 xtime
operations are required to execute MixColumns on 32 bits.
For the full 128 bit block, this translates to the requirement
of 96 XORs plus 16 xtime operations. In comparison, for the
128-bit BSPN, the linear transformation requires 31 XORs to
execute. This is achieved by (a) first computing the XOR of
all 16 bytes (using 15 XORs), followed by (b) 16 XORs, one
XOR of the resulting byte of (a) with each byte of the block.
Hence, on a per-round basis, considering only the encryption
operation, the linear transformation of BSPN requires no
xtime operations and less than 1/3 of the XOR operations
required to implement the AES linear transformation.

Considering now decryption, the BSPN has even greater
advantage in efficiency. It is well known that the direct
implementation of InvMixColumns operation of AES is much
less efficient than the MixColumns operation used in en-
cryption. Conversely, the inverse linear transformation in the
BSPN cipher is identical to the linear transformation used in
encryption. (This follows from the fact that BSPN is designed
to be a cipher with involutory components.) Hence, the
linear transformation operation of BSPN is substantially more
efficient than AES for decryption. Further, since the S-boxes
used for decryption in BSPN are identical to the S-boxes used
in encryption (again, following from the involution nature of
the cipher), then, while AES needs to store in memory both
256 bytes for the encryption S-box and 256 bytes for the
decryption S-box, BSPN only requires the storage of one 256
byte table for the S-box.

It can also be shown that BSPN can be very compactly
and efficiently implemented in target hardware environments
such as FPGAs and ASICs, as well as, microcontrollers with
datapath widths larger than 8 bits. However, a full discussion
of this is outside the scope of this paper.

III. INTEGRAL CRYPTANALYSIS

Integral cryptanalysis was first presented as an attack on
the Square block cipher (a predecessor of AES) and was
initially referred to as the Square attack [8]. Subsequently,
similar attacks have been applied to various block cipher
structures, under the names of saturation attack [9], structural
cryptanalysis [10], integral cryptanalysis [7], and multiset
cryptanalysis [11]. In our work, we use the terminology
associated with integral cryptanalysis. We first describe a
first order integral attack which makes use of a deterministic
integral.

The basic concept of integral cryptanalysis as applied to a
64-bit block cipher is shown in Figure 2. Integral cryptanal-
ysis is a chosen plaintext attack, requiring the cryptanalyst to
obtain sets of ciphertexts corresponding to plaintexts with a
specific relationship. This relationship (as shown in Figure 2)
is such that all bytes of the plaintext block, but one, are held
constant at arbitrary values (indicated by “C” in the plaintext
block), while the remaining byte is cycled through all 256
possible values from all zeroes to all ones (indicated by “A” in
the plaintext block). At the output of round R−1 (where it is
assumed that the cipher has R rounds), for ciphers susceptible



!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

!
R!−!1!Rounds!

of!
Block!Cipher!

A! C!C!C!C!C!C! C!
Plaintext!

! !!!!!! S!

! ! !! ! !!!

Last!Round!Key!Mixing! KG!

! !!!!!! !Ciphertext!

Substitution!

Round!Key!Mixing!

Fig. 2. Implementation of Integral Cryptanalysis on 64-bit Block Cipher

to the attack, at least one byte can be observed where the
integral, I , is certain to be zero, that is, I = [0, 0, ..., 0]. An
integral is defined as an XOR sum as follows:

I =

256⊕
i=1

Xi (2)

with Xi representing the byte after the round key mixing at
the input to the S-box layer in round R. In Figure 2, a byte
with integral I of zero is indicated by “S”.

In general, for a strong cipher, the integral is to be random
and therefore the expected integral would be one of 256
possible values with equal probability. However, since, for
a weak cipher, the integral is zero with a probability 1, when
guessing round key bits in the last round, the integral can be
used to distinguish the correct key guess from the incorrect
guesses. This is done as follows: the cryptanalyst guesses all
values of the last round key for the byte associated with the
integral byte (indicated by KG in Figure 2). For each guess,
all ciphertext values are decrypted one round (that is, through
the last round key and last layer of S-boxes) to form the byte
value associated with the integral byte. The integral is then
calculated by summing over all bytes generated for the set
of ciphertexts. For the correct key guess, the integral will be
zero with certainty, while for each incorrect guess, the integral
will not be zero with a probability 255/256 (assuming that the
decryption using the wrong key results in a random integral).
So an integral of zero corresponds to a set of key guesses
containing the correct key and a small number of spurious
keys (possibly none). To eliminate spurious keys, the attacker
can use another set of plaintexts to generate a new integral
for testing. The probability of the same spurious key being
in the set of keys with a zero integral for both cases is very

small. Hence, if a key appears in both sets, we can assume
that it is the correct key.

The complexity of this basic attack is very low. Assuming
no spurious keys in the original set, we would only require
256 chosen plaintexts and associated ciphertexts to attack the
cipher, while requiring an analysis for the integrals over 256
ciphertexts for each of 256 guesses of the round key byte, KG,
for the final round. Hence, 216 operations (where an operation
is a partial decryption) are required for the attack and 28

chosen plaintexts and associated ciphertexts are utilized.

IV. APPLICATION OF FIRST ORDER INTEGRAL
CRYPTANALYSIS TO BSPN

In order to apply the first order attack to BSPN, we must
consider the maximum number of rounds for which at least
one output byte is guaranteed to have an integral of zero.
We focus our discussion on the BSPN structure with a 64-bit
block size; however, the same results and conclusions apply
to larger block sizes. For BSPN, after 2 rounds (plus the
key mixing before the 3rd round S-boxes), the integrals of
all datapath bytes are zero. For 3 rounds, the integrals of
all bytes are zero with a probability substantially less than
one. Hence, the first order integral attack is applicable to a
3 round version of BSPN (using a 2 round integral), but not
applicable to versions of the cipher with 4 or more rounds
(requiring integrals of 3 or more rounds).

We now show the correctness of these results by first
considering some basic axioms. Recall that an integral is
formed for a byte in the cipher datapath by summing over
all byte values in the set corresponding to the set of 256
plaintexts used in the attack. Let C represent the set of
integrals corresponding to all bytes in the integral being
constant, A represent the set of integrals for which the byte
cycles through all possible values (although not in any specific
order) over the set defined by the plaintext set, and S represent
the set of integrals which evaluate to zero over the set defined
by the plaintext set. Further, let X represent the byte over
which an integral is taken, while f and g represent the S-box
and linear transformation functions, respectively. Note that f
maps an 8-bit input to an 8-bit output and g takes N = 8
bytes as input to produce an output byte as per (1).

The axioms of Table I are trivially true and can be easily
proven (see [10]). Axioms 1 and 2 are trivial properties of
integrals. Axioms 3, 4, and 5 represent the operation of the
round key mixing and, in cases involving constant bytes, the
linear transformation. The effect of the S-box operation on
an integral is given in Axioms 6, 7, and 8 and Axiom 9 is a
simple statement that the linear transformation does not affect
the result of the integration, as the integration is itself a linear
operation.

Consider now subsequent rounds of BSPN. At the input,
using the plaintext set with a byte from the set A on the left
(which we shall refer to as byte 1) and the remaining bytes
(from left to right, bytes 2 to 8) as constant bytes, clearly all
input bytes have a zero integral. The transformations of the
integral properties through the subsequent operations of the



TABLE I
AXIOMS FOR INTEGRAL CRYPTANALYSIS

Axiom Axiom Interpretation
Num.

1 X ∈ C =⇒ X ∈ S Any byte that is constant has an integral of zero.
2 X ∈ A =⇒ X ∈ S Any byte that cycles through all values has an integral of zero.
3 X ∈ C, k ∈ C =⇒ X ⊕ k ∈ C Adding a constant to a constant results in a constant.
4 X ∈ A, k ∈ C =⇒ X ⊕ k ∈ A Adding a constant to a byte that cycles through all values results

in a byte that cycles through all values.
5 X ∈ S, k ∈ C =⇒ X ⊕ k ∈ S Adding a constant to a byte that has a zero integral results in a

byte that has a zero integral.
6 X ∈ C =⇒ f(X) ∈ C The application of the S-box to a constant byte results in a

constant byte.
7 X ∈ A =⇒ f(X) ∈ A The application of the S-box to a byte which cycles through all

values results in a byte that cycles through all values.
8 X ∈ S 6=⇒ f(X) ∈ S The application of the S-box to a byte which has a zero integral.

does not necessarily result in a byte with a zero integral.
9 X1 ∈ S, ..., XN ∈ S, The application of the linear transform to bytes that have

=⇒ g(X1, ..., XN ) ∈ S integrals of zero, results in a byte that has an integral of zero.

cipher are illustrated in Table II, which lists the integral of
the output of the operation, as well as the output properties,
based on the inputs to the given operation. (Bytes for which
the integral does not belong to the sets with the properties
described above are indicated by a dash in Table II.) The
output properties and the integrals are determined by making
use of the indicated axioms found in Table I. For example,
for the round 1 linear transformation, each addition is either
the sum of all constant bytes (which can be taken as pairwise
sums using Axiom 3) or the sum of 6 constant bytes and
one byte from set A (which can be considered as added to
the constant byte which is the sum of 6 constant bytes); the
integral of each byte from set A or set C must be zero and
therefore all bytes also belong to set S as per Axioms 1 and
2.

From Table II, we can see that the integral at the output of
the second round (and, consequently, after the key mixing of
the 3rd round) is zero. Hence, as described in Section III, the
cryptanalyst can mount a successful attack on a cipher of 3
rounds. After the S-box of the 3rd round, the integral of all
bytes can no longer be guaranteed to be zero and, hence, the
attack cannot be applied to ciphers comprised of 4 or more
rounds.

V. HIGHER ORDER INTEGRAL CRYPTANALYSIS OF BSPN

Higher order integral cryptanalysis was introduced in [7]
and applied to AES. Due to the linear transformation structure
(i.e., ShiftRows and MixColumns) of AES, it is shown that a
fourth order integral attack is applicable up to 6 rounds of
AES. This results in an improvement in complexity over the
6 round attack possible with first order integral cryptanalysis.

For a 64-bit BSPN, in applying a second order attack, using
a chosen plaintext approach, 6 of the 8 input bytes are held
at an arbitrary fixed value, while the remaining two bytes are
cycled through all possible 216 values. At the output of the
R−1 rounds, the integral for a byte is considered as the sum
of 216 values in response to the set of plaintext values. The

resulting higher order integral, I , can be represented as

I =

256T⊕
i=1

Xi (3)

with Xi representing the byte at the output of round R − 1
corresponding to the i-th plaintext input and for the second
order attack T = 2. Of course, there are 28 possible outcomes
for the integral of (3), which for a strong cipher, would be ex-
pected to be equally likely. In applying integral cryptanalysis
to a weak cipher, we consider the case where a zero integral
has a probability 1 of occurring. In this case, we can apply
the same principles as for the first order attack to obtain a
byte of the last round key. More generally, for an attack of
order T , T bytes of plaintext are cycled through all possible
values, while the remaining 8 − T bytes are kept constant.
Again, cases where integrals of zero are known to occur can
be exploited to find bits of the last round key.

We have experimentally applied the basic approach of
higher order integral cryptanalysis to a 64-bit BSPN (based
exclusively on the AES S-box) for T = 2, 3, and 4 using
simulated data, and have found that integrals equal to zero
occur with probability 1 at the output of round 3 for all values
of T , implying that it is possible to apply a higher order
integral attack to a 4 round implementation of BSPN. Hence,
for the second order attack (which is the most efficient), it
will take 216 chosen plaintexts, with a total of 224 partial
decryptions to determine a key byte from the last round of
the cipher.

VI. PROBABILISTIC INTEGRAL CRYPTANALYSIS

The previous description of integral cryptanalysis is deter-
ministic in that it relies on the certainty that the integral of
the targeted byte at the output of the round R − 1 has an
integral of zero. This knowledge is then used to distinguish a
correct (for which the certainty exists) and an incorrect key
byte (for which the probability of the integral being zero is
expected to be 1/256). In this section, we explore making use
of integrals that are not zero with probability 1, but with a



TABLE II
PROVABLE FIRST ORDER INTEGRAL PROPERTIES OF BSPN

Operation Input Bytes Output Bytes Axioms
Properties Integrals Properties Integrals

Plaintext ACCCCCCC SSSSSSSS 1, 2
Round 1 Key Mixing ACCCCCCC SSSSSSSS ACCCCCCC SSSSSSSS 1,2,3,4

Round 1 S-box ACCCCCCC SSSSSSSS ACCCCCCC SSSSSSSS 1,2,6,7
Round 1 Linear Transform ACCCCCCC SSSSSSSS CAAAAAAA SSSSSSSS 1,2,3,4

Round 2 Key Mixing CAAAAAAA SSSSSSSS CAAAAAAA SSSSSSSS 1,2,3,4
Round 2 S-box CAAAAAAA SSSSSSSS CAAAAAAA SSSSSSSS 1,2,6,7

Round 2 Linear Transform CAAAAAAA SSSSSSSS - - - - - - - - SSSSSSSS 1,2,9
Round 3 Key Mixing - - - - - - - - SSSSSSSS - - - - - - - - SSSSSSSS 5

Round 3 S-box - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8

probability that is substantially different than the probability
that a random byte has an integral of zero, which is assumed
to be 1/256.

Consider the first order attack. Examining the integrals
at the output of the third round S-boxes, we have found
some bytes have a probability substantially different than
1/256, although less than 1. Experimental probabilities for
107 randomly generated integrals for the outputs of the round
3 S-boxes ranged from .0050143 to .0050429 (except the
leftmost S-box, S-box 1, for which the value was .0039197).
The expected random probability is 1/256 = .00390625 and,
while this probability is very close to the observed probability
for S-box 1, the remaining S-boxes have probabilities of about
.005, which is clearly distinguishable and can be shown to
have a difference of statistical significance from the random
probability. If a cryptanalyst could use the information from
one of these 7 S-boxes, it would be conceivable to distinguish
the case for the correct key from the incorrect keys. However,
considering Figure 1, for a 4 round cipher (that is, R = 4), in
order to examine the information at the output of the round
3 S-boxes, it is necessary to decrypt (for each guess of the
last round key byte) through the S-box layer plus the linear
transformation layer of round 3. This makes it not possible
to contain the guessed round key to only one byte, since
many bytes influence one output byte of the inverse linear
transformation.

In order to get around this problem, the cryptanalyst can
make use of the fact that the XOR sum of two bytes at the
output of the linear transformation is simply the sum of the
corresponding two input bytes. That is,

Vi ⊕ Vj = Ui ⊕ Uj (4)

where {Vi, Vj} and {Ui, Uj} represent bytes of the linear
transformation output and input, respectively. This can be
easily proven by considering (1).

Table III lists the experimental probabilities from 107 ran-
domly generated integrals from the XOR of pairs of bytes at
the output the round 3 linear transformation, which according
to (4), is also equal to the sum of the corresponding two bytes
at the output of the round 3 S-boxes. Since the integrals of
the bytes at the output of these S-boxes is not expected to be
random, it is reasonable to expect that the XOR of two such
bytes will also not be random. In fact, as can be determined

from Table III, the integral of the sum of the two bytes is
expected to be zero with a probability of about .00414, except
when byte 1 is involved, where the integral of the XOR sum
appears to be zero with the probability of a random integral.

A probabilistic attack on the 4 round cipher can proceed
as follows. Consider the use of n sets of plaintexts for the
first order attack, that is, a total of 256n plaintexts to generate
n integrals by taking the pairwise XOR at the output of the
round 3 linear transformation. For each ciphertext, two bytes
of the last round key are guessed and decryption is undertaken
to derive the output of the round key mixing at the input to
the round 4 S-boxes (essentially equivalent to the output of
the round 3 linear transformation in terms of the integral). For
a correct guess of the 16 bits of the target round key bytes, at
the output of the 3rd round, the probability that the integral
will be zero will be about .00414, or, in other words, about
.00414n values of the integrals will be zero, whereas for an
incorrect key guess, about n/256 integrals will evaluate to
zero.

Out of a total of n integrals, the probability that m integrals
evaluate to zero is derived in both cases by the binomial
distribution:

PS(m) =

(
n

m

)
× Λm × (1− Λ)n−m, (5)

where for the case of the correct key, Λ = .00414 and for the
incorrect key, Λ = 1/256.

Let µ0 (µ1) represent the expected number of zero integrals
for the incorrect (correct) key and σ2

0 (σ2
1) be the variance of

m. For the binomial distribution, we have

µ0 = (1/256) · n
σ2
0 = n× (1/256)× (1− 1/256) = .003891 · n. (6)

and

µ1 = .00414 · n
σ2
1 = n× .00414× (1− .00414) = .004123 · n. (7)

In attacking the cipher, the cryptanalyst can set a threshold γ
so that, if, for the n integral values calculated for the guessed
target partial round key, m are zero and m > γ, then the
key can assumed to be correct (since more zero integrals
are expected for the correct key) and for m < γ, the key
can be assumed to be incorrect. Using this process, we can
approximate the binomial distributions as Guassian with the



TABLE III
PROBABILITY OF ZERO INTEGRAL FOR THE SUM OF TWO BYTES AFTER ROUND 3 LINEAR TRANSFORMATION

Byte Numbers 1+2 1+3 1+4 1+5 1+6 1+7 1+8
Probability .0039022 .0039102 .0039014 .0039266 .0039301 .0039361 .0039489

Byte Numbers 2+3 2+4 2+5 2+6 2+7 2+8 3+4
Probability .0041021 .0041446 .0041475 .0041379 .0041736 .0041592 .0041153

Byte Numbers 3+5 3+6 3+7 3+8 4+5 4+6 4+7
Probability .0041641 .0041098 .0041427 .0041686 .0041446 .0041731 .0041600

Byte Numbers 4+8 5+6 5+7 5+8 6+7 6+8 7+8
Probability .0041423 .0041635 .0041491 .0041513 .0041424 .0041355 .0041552

indicated means and variances to estimate the likelihood of
the attack success. For example, let γ > µ0 + 3 × σ0 and
γ < µ1−2×σ1. As a result, we can estimate that the correct
key is recognized with probability of at least 97.72%, as given
by the area of the Guassian distribution above 2 standard
deviations below the mean. An incorrect key is improperly
assumed to be correct with a probability of less than .13%
(implying all 255 incorrect keys have a probability << 1 of
having one or more appear correct), as determined by the
tail of the Gaussian distribution above 3 standard deviations
above the mean. Making use of (6) and (7), it can be shown
that these conditions for γ are met when n > 1.82 × 106.
Hence, such an attack requires 1.82×106×256 ≈ 229 chosen
plaintexts to implement, where each ciphertext requires the
analysis of 216 key guesses in order to determine the targeted
two bytes of the last round key of the cipher. Finding 7 of
the 8 bytes of the last round key can be derived in this way
(since byte 1 does not provide useful information) and then
this knowledge can typically be easily extended to find the
8th byte of the last round key and subsequently the remaining
round keys.

The two probabilities associated with a successful attack
can be modified by moving the location of the decision
threshold γ. Moving it closer to µ1, for example, will decrease
the probability that the correct key is recognized, but decrease
the probability that an incorrect key will be mistakenly
determined to be correct. Also, increasing the value of n can
be used to increase the probability of the attack success.

The probabilistic first order integral attack takes about
229 × 28 = 237 chosen plaintexts of data and has a com-
plexity of 237 × 216 = 253 partial decyption operations to
find two key bytes in the last round of a 4 round BSPN.
In comparison, a second order deterministic attack on a 4
round BSPN only requires the analysis of one second order
integral resulting from 216 chosen plaintexts, with a com-
plexity of 224 partial decryption operations. For second (and
higher) order attacks, we have also experimentally examined
the probabilities of zero integrals for rounds exceeding the
number of rounds required in the deterministic attack and
have not observed meaningful statistical deviations from the
probabilities expected for randomly generated integrals. We
conclude therefore that the probabilistic first order attack is
not as efficient as deterministic second order attacks and the
probabilistic approach does not appear to be applicable to
higher order integral attacks.

VII. CONCLUSIONS

We have considered the integral cryptanalysis of the BSPN
cipher structure. For a 64-bit (or larger) BSPN, a first order
integral attack is applicable to a 3 round cipher, requiring
216 partial decryptions making use of 28 chosen plaintexts to
determine a byte from the last round key. This is comparable
to the general result discussed in [10], which tackles a general
3 round structure with an unknown S-box mapping. Extending
integral cryptanalysis, it is possible to attack a 4 round BSPN
structure using a second order attack (requiring 216 chosen
plaintexts and 224 partial decryptions) or a probabilistic first
order attack (requiring 237 chosen plaintexts and 253 partial
decryptions). BSPN ciphers of 5 or more rounds appear to be
secure against integral cryptanalysis.

ACKNOWLEDGMENT

The author thanks Huicong Liu, who did some preliminary
investigative programming for this research.

REFERENCES

[1] A.M. Youssef, S.E. Tavares, and H.M. Heys, “A New Class of
Substitution-Permutation Networks”, Proceedings of Workshop on Se-
lected Areas in Cryptography (SAC ’96), Kingston, Ontario, Canada,
pp. 132-147, 1996.

[2] E. Biham and A. Shamir, “Differential Cryptanalysis of DES-like Cryp-
tosystems”, Proceedings of CRYPTO ’90, Lecture Notes in Computer
Science, vol. 537, Springer, pp. 2-21, 1990.

[3] M. Matsui, “Linear Cryptanalysis Method for DES Cipher”, Proceedings
of EUROCRYPT ’93, Lecture Notes in Computer Science, vol. 765,
Springer, pp. 386-397, 1993.

[4] X. Zhang, H.M. Heys and C. Li, “Energy Efficiency of Encryption
Schemes Applied to Wireless Sensor Networks”, Security and Commu-
nication Networks Journal, vol. 5, no. 7, Wiley, pp. 789-808, 2011.

[5] “Advanced Encryption Standard”, FIPS -197, National Institute of Stan-
dards and Technology, Nov. 2001.

[6] C.E. Shannon, “Communication Theory of Secrecy Systems”, Bell
System Technical Journal, vol. 28, pp. 656-715, 1949.

[7] L.R. Knudsen and D. Wagner, “Integral Cryptanalysis”, Proceedings
of Fast Software Encryption (FSE 2002), Lecture Notes in Computer
Science, vol. 2365, Springer, pp. 112-127, 2002.

[8] J. Daemen, L. Knudsen, and V. Rijmen, “The Block Cipher SQUARE”,
Proceedings of Fast Software Encryption (FSE 1997), Lecture Notes in
Computer Science, vol. 1267, Springer, pp. 149-165, 1995.

[9] S. Lucks, “Attacking Seven Rounds of Rijndael Under 192-bit and 256-
bit Keys”, Proceedings of 3rd AES Candidate Conference, pp. 215-229,
2000.

[10] A. Biryukov and A. Shamir, “Structural Cryptanalysis of SASAS”,
Proceedings of EUROCRYPT 2001, Lecture Notes in Computer Science,
vol. 2045, Springer, pp. 394-405, 2001.

[11] C. Cannière, A. Biryukov, and B. Preneel, “An Introduction to Block
Cipher Cryptanalysis”, Proceedings of the IEEE, vol. 94, no. 2, IEEE,
pp. 346-356, 2006.


